КРАСОТА В МАТЕМАТИЧЕСКОМ ОБРАЗОВАНИИ: СИНЕРГЕТИЧЕСКОЕ МИРОВИДЕНИЕ
https://doi.org/10.17853/1994-5639-2019-2-9-26
Аннотация
Введение. Ключевыми понятиями, раскрывающими сущность красоты, в настоящее время являются математические универсалии «симметрия» и «фрактальность». Однако соотношение этих категорий, важнейших для современной математики, науки и культуры в целом, ни в математическом образовании, ни в педагогической литературе до сих пор практически не рассматривалось из-за того, что понятия фракталов, фрактальности и производных от них фрактальной геометрии и фрактальной графики, ставшие общеупотребительными среди математиков и компьютерных художников, пока тем не менее не включены в подавляющее большинство вузовских программ.
Цель статьи - продемонстрировать взаимообусловленность и корреляции феноменов симметрии и фракталов и показать значимость совместного изучения этих понятий в курсе математики для эстетического воспитания школьников и студентов и формирования их мировоззрения.
Методология и методы. Ведущая роль в исследовании отводится постнеклассической методологии, базирующейся на синергетическом подходе к процессу познания. Привлекались также положения тринитарной методологии, предполагающей наличие, кроме двух бинарных оппозиций, третьего элемента, необходимого для решения проблемы противоречия данных оппозиций и интеграции в единое целое как условия их сосуществования. В ходе работы использовались анализ и обобщение научных педагогических и методических источников, методы сравнительно-сопоставительного, исторического и логического видов анализа.
Результаты и научная новизна. На протяжении столетий красота понималась как устойчивый порядок и симметрия. Синергетика как общенаучная теория о самоорганизации сложных систем позволяет дать иную трактовку красоты – как некоего аттрактора, возникающего в результате самоорганизации природы или полета человеческой мысли.
В наиболее общем виде симметрия может быть выражена как преобразование подобия, которое лежит также в основе другого понятия – фрактальности. С одной стороны, фрактальность можно воспринимать как одно из проявлений симметрии в расширительном ее смысле. С другой стороны, симметрию можно считать выражением фрактальности с конечным числом итераций. Таким образом, понятия симметрии и фрактальности довольно тесно взаимосвязаны, хотя это две противоположности, которые эстетически и математически взаимодополняют друг друга и переходят одна в другую. Если первая раскрывает в красоте устойчивый порядок, то вторая отражает в ней результат самоорганизации хаоса природы или свободы человеческой мысли. В синергетической парадигме категория красоты представляется как интеграция и взаимодействие симметрии и фрактальности. Оба этих понятия равно важны для постижения гармонии мироздания, чем определяется их значимость для обучения математике и эстетического воспитания учащихся.
Практическая значимость. Совместное овладение теорией симметрии и фракталов будет способствовать решению задач, поставленных в Концепции развития математического образования: повышению мотивации учащихся к изучению математики, развитию их познавательного интереса и познавательной активности, сближению образовательного и исследовательского процессов, преодолению проблем эстетической направленности познания.
Ключевые слова
Об авторе
В. А. ТестовРоссия
доктор педагогических наук, профессор кафедры математики
Список литературы
1. Hausman D. M. Causal asymmetries. New York: Cambridge University Press, 1998.
2. Horwich P. Asymmetries in time. Cambridge, MA: MIT Press, 1987.
3. Дорфман Л. Я. Асимметрия и симметрия в восприятии времени // Мир психологии. 2013. № 4 (76). С. 224–236.
4. Томских А. А. Симметрия и асимметрия высшего образования в условиях глобализации // Вестник Балтийского федерального университета им. И. Канта. Серия: Естественные и медицинские науки. 2012. № 1. С. 124–132.
5. Бурмистрова Н. А., Кальницкая И. В. Симметрия и асимметрия стратегий развития высшего образования в контексте устойчивого развития // Сборник научных трудов VII Международной научно-практической конференции «Симметрия: теоретический и методический аспекты»: в 2 т. Т. 1. Астрахань: Триада, 2018. С. 7–10.
6. Burmistrova N. A., Kormiltseva E. A., Shmakova A. P., Loshchilova M. A. An Innovative Approach to Education in the Context of Sustainable Development // The European Proceedings of Social & Behavioural Science. 2017. № XXVI. P. 122–129.
7. Фирстова Н. И. Эстетическое воспитание при обучении математике в средней школе: учебное пособие. Москва: МПГУ; Прометей, 2013. 128 с.
8. Фирстова Н. И. Роль эстетического воспитания на уроках математики в средней школе // Образовательные ресурсы и технологии. 2016. № 2 (14). С. 88–92.
9. Черник О. В. Типология задач, реализующих эстетический потенциал математики в процессе обучения // Математический вестник педвузов и университетов Волго-Вятского региона. 2004. № 6. С. 313–321.
10. Скворцова Н. Н. Урок «Симметрия вокруг нас» по курсу «Наглядная геометрия» (6-й класс) // Концепт: научно-методический электронный журнал. 2017. Т. 15. С. 73–74.
11. Саранцев Г. И. Эстетическая мотивация в обучении математике. Саранск: ПО РАО: Мордовский педагогический институт, 2003. 136 с.
12. Розов Н. Х. Курс математики общеобразовательной школы: сегодня и послезавтра // Задачи в обучении математике: теория, опыт, инновации: материалы Всероссийской научно-практической конференции, посвященной 115-летию чл.-кор. АПН СССР П. А. Ларичева. Вологда: Русь, 2007. С. 6–12.
13. Антипова Е. П., Богановская Н. Д., Бубликов С. В. и др. Современные проблемы физико-математического образования: вопросы теории и практики: всероссийская коллективная монография. Екатеринбург: УрГПУ; АМБ, 2012. 264 с.
14. Смирнов Е. И., Секованов В. С., Миронкин Д. П. Повышение учебной мотивации школьников в процессе освоения понятий самоподобного и фрактального множеств на основе принципа фундирования // Ярославский педагогический вестник. 2015. № 3. С. 37–42.
15. Секованов В. С. Методическая система формирования креативности студента университета в процессе обучения фрактальной геометрии. Кострома: КГУ им. Н. А. Некрасова, 2005. 279 с.
16. Волошинов А. В. Об эстетике фракталов и фрактальности искусства // Синергетическая парадигма. Нелинейное мышление в науке и искусстве. Москва: Прогресс-Традиция, 2002. С. 213–246.
17. Горшков А. А. Эстетическое воспитание учащихся на уроках математики с использованием программы ADOBE FLASH // Ярославский педагогический вестник. 2012. № 2, Т. II. Серия: Психолого-педагогические науки. С. 88–91.
18. Секованов В. С., Дорохова Ж. В., Кудряшова Ю. В., Катержина С. Ф. Использование в обучении фрактальных методов и информационных технологий как средство эстетического воспитания студентов вуза // Вестник Костромского государственного университета. Серия: Педагогика. Психология. Социокинетика. 2017. Т. 23. № 5. С. 87–93.
19. Секованов В. С., Кудряшова Ю. В., Дорохова Ж. В., Зобов А. Ю., Селезнева Е. М. Эстетика фрактальной геометрии // Обучение фрактальной геометрии и информатике в вузе и школе в свете идей академика А. Н. Колмогорова: материалы Международной научно-методической конференции. Кострома: КГУ, 2016. С. 56–63.
20. Бабкин А. А. Фрактальная геометрия как средство ознакомления с новыми понятиями современной математики // Задачи в обучении математике: теория, опыт, инновации: материалы Всероссийской научно-практической конференции, посвященной 115-летию чл.-кор. АПН СССР П. А. Ларичева. Вологда: Русь, 2007. С. 13–16.
21. Горшков А. А. Изучение элементов фрактальной геометрии в школе как средство эстетического воспитания учащихся // Вестник Костромского государственного университета им. Н. А. Некрасова. Т. 19, № 1. Кострома. 2013. С. 181–185.
22. Тестов В. А. О понятии педагогической парадигмы // Образование и наука. 2012. № 9. С. 5–15.
23. Golubev O. B., Testov V. A. Network Information Technologies as a Basis of New Educational Paradigm // Procedia – Social and Behavioral Sciences. Vol. 214, 5 December 2015. P. 128–134.
24. Тестов В. А. Математическое образование в условиях сетевого пространства // Образование и наука. 2013. № 2. С. 111–121.
25. Волошинов А. В., Шиндель С. В. Гармония – симметрия – красота // Человек. 2017. № 4. С. 81–93.
26. Табоякова Ю. В., Волошинов А. В. Хаос древний и современный // Человек. 2018. № 4. С. 49–65.
27. Тестов В. А. Интеграция дискретности и непрерывности при формировании математической картины мира обучающихся // Интеграция образования. 2018. Т. 22, № 3. С. 480–492. DOI: 10.15507/1991–9468.092.022.201803.480–492
Рецензия
Для цитирования:
Тестов В.А. КРАСОТА В МАТЕМАТИЧЕСКОМ ОБРАЗОВАНИИ: СИНЕРГЕТИЧЕСКОЕ МИРОВИДЕНИЕ. Образование и наука. 2019;21(2):9-26. https://doi.org/10.17853/1994-5639-2019-2-9-26
For citation:
Testov V.A. BEAUTY IN MATHEMATICAL EDUCATION: SYNERGETIC WORLDVIEW. The Education and science journal. 2019;21(2):9-26. (In Russ.) https://doi.org/10.17853/1994-5639-2019-2-9-26