Support of individual educational trajectories based on the concept of explainable artificial intelligence
https://doi.org/10.17853/1994-5639-2022-1-163-190
Abstract
Introduction. Professional education in the context of individual educational trajectories (IET) meets the needs of both students themselves and the labour market due to the relevance of the content, flexibility of the educational process and learning technologies. However, in the context of digitalisation, IET support, including their planning and subsequent management of learning, entails the emergence of new requirements for information, analytical and methodological support of information systems designed to manage the educational process of the university. The problem of this study is determined by the contradiction between the intensive growth (natural for digitalisation) in the volume and variety of types of collected data, which can and should be used to support IET. In addition, there is also a lack of adequate analytical tools in educational information management systems.
Aim. The present research aimed to study and test the digitalisation methodology for IET support, based on the application of the concept of explainable artificial intelligence for analysing student digital footprint data, the content of documents regulating the educational process, as well as labour market demands.
Research methodology and methods. As a theoretical basis for the study, the authors relied on the principles of explainable artificial intelligence and their application to the interpretation of data from the educational process and the prediction of educational outcomes. The methods of intellectual analysis of texts in natural language were employed for preliminary processing of source documents. To predict educational outcomes, the authors used clustering, classification and regression models created through applying machine learning methods.
Results. The authors developed and studied predictive models with the subsequent formation of recommendations for the tasks of choosing an educational programme by applicants, choosing an elective discipline, forming a team for a group project and employment in accordance with professional competencies. The developed computer program automatically generates objective and explainable recommendations based on expert knowledge and predicting results. The algorithm for constructing recommendations is divided into stages and provides for variability in decision making.
Scientific novelty. The authors proposed a methodology for digital support of IET, corresponding to the principles of explainable artificial intelligence, i.e. machine learning models predict educational outcomes, and a special algorithm automatically generates personalised recommendations based on the results of the analysis of data on the educational process. The developed approach confirmed its effectiveness in testing on the example of bachelor’s and master’s degree programmes in the field of computer science, information technology and information security.
Practical significance. A preliminary analysis of significant volumes of initial data made it possible to obtain objective information about the data quality, including the content and structure of documents presented in various university information systems. Based on the the oretical results of the research, the authors developed a recommendation system. It included special services for students, teaching staff, tutors, and administrators, providing visual and user-oriented predictive results and recommendations. Testing of services at the Institute of Mathematics and Computer Science of University of Tyumen confirmed the feasibility of developing the functionality of the university information systems in the direction of collecting and analysing data from a student’s digital footprint and the relevance of this analysis results both by subjects of the educational process and by the labour market.
Keywords
About the Authors
I. G. ZakharovaRussian Federation
Irina G. Zakharova – Dr. Sci. (Education), Professor, Software Department
Tyumen
M. S. Vorobeva
Russian Federation
Marina S. Vorobeva – Cand. Sci. (Engineering), Head of the Software Department
Tyumen
Yu. V. Boganyuk
Russian Federation
Yulia V. Boganyuk – Senior Lecturer, Software Department
Tyumen
References
1. Зеер Э. Ф., Сыманюк Э. Э. Индивидуальные образовательные траектории в си-стеме непрерывного образования // Педагогическое образование в России. 2014. № 3. С. 74–82.
2. Зеер Э. Ф., Заводчиков Д. П., Зиннатова М. В., Лебедева Е. В. Индивидуальная образовательная траектория как установка субъекта в системе непрерывного образования // Научный диалог. 2017. № 1. С. 266–279.
3. Andrews R., Li J., Lovenheim M. F. Heterogeneous paths through college: detailed patterns and relationships with graduation and earnings // Economics of Education Review. 2014. № 42. P. 93–108. DOI: 10.1016/j.econedurev.2014.07.002
4. Haas C., Hadjar A. Students’ trajectories through higher education: a review of quantitative research // Higher Education. 2020. № 79 (6). P. 1099–1118. DOI: 10.1007/s10734-019-00458-5
5. Зеер Э. Ф., Церковникова Н. Г., Третьякова В. С. Цифровое поколение в контексте прогнозирования профессионального будущего // Образование и наука. 2021. Т. 23, № 6. С. 153–184. DOI: 10.17853/1994-5639-2021-6-153-184
6. Clow D. The learning analytics cycle: closing the loop effectively // Proceedings of the 2nd International Conference on Learning Analytics and Knowledge – LAK’12. 29 April – 2 May 2012. Vancouver, British Columbia, Canada. New York: Association for Computing Machinery, 2012. P. 134–138.
7. Clow D. An overview of learning analytics // Teaching in Higher Education. 2013. № 18 (6). P. 683–695. DOI: 10.1080/13562517.2013.827653
8. Jones K. M. Advising the whole student: eAdvising analytics and the contextual suppression of advisor values // Education and Information Technologies. 2019. № 24 (1). P. 437–458. DOI: 10.1007/s10639-018-9781-8
9. Jones K. M. Just because you can doesn’t mean you should: practitioner perceptions of learning analytics ethics // Libraries and the Academy. 2019. № 19 (3). P. 407–428. DOI: 10.1353/pla.2019.0025
10. Pargman T. C., McGrath C. Mapping the terrain of ethics in learning analytics: A systematic literature review of empirical research // Journal of Learning Analytics. 2021. № 1. P. 1–17. DOI: 10.18608/jla.2021.1
11. Tsai Y. S., Poquet O., Gašević D., Dawson S., Pardo A. Complexity leadership in learning analytics: Drivers, challenges, and opportunities // British Journal of Educational Technology. 2019. № 50 (6). P. 2839–2854. DOI: 10.1111/bjet.12846
12. Kitto K., Knight S. Practical ethics for building learning analytics // British Journal of Educational Technology 2019. № 50 (6). P. 2855–2870. DOI: 10.1111/bjet.12868
13. Castelvecchi D. Can we open the black box of AI? // Nature News. 2016. № 538 (7623). P. 20–23. DOI: 10.1038/538020a
14. Lipton Z. C. The mythos of model interpretability // Communications of the ACM. 2018. № 61 (10). P. 36–43. DOI: 10.1145/3233231
15. Miller T. Explanation in artificial intelligence: Insights from the social sciences // Artificial Intelligence. 2019. № 267. P. 1–38. DOI: 10.1016/j.artint.2018.07.007
16. Gunning D., Aha D. DARPA’s explainable artificial intelligence (XAI) program // AI Magazine. 2019. № 40 (2). P. 44–58. DOI: 10.1609/aimag.v40i2.2850
17. Захарова И. Г. Методы машинного обучения для информационного обеспечения управления профессиональным развитием студентов // Образование и наука. 2018. Т. 23, № 9. С. 91–114. DOI: 10.17853/1994-5639-2018-9-91-114
18. Bird S., Klein E., Loper E. Natural language processing with Python: Analyzing Text with the natural language toolkit. Sebastopol. CA: O’Reilly Media, 2009. 504 p.
19. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Duchesnay E. Scikit-learn: Machine learning in Python // Journal of Machine Learning Research. 2011. № 12. P. 2825–2830. Available from: https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf (date of access: 30.07.2021).
20. Salehi M., Kamalabadi I. N., Ghoushchi M. B. G. Personalized recommendation of learning material using sequential pattern mining and attribute based collaborative filtering //Education and Information Technologies. 2014. № 19 (4). P. 713–735. DOI: 10.1007/s10639-012-9245-5
21. Захарова И. Г., Боганюк Ю. В., Воробьева М. С. Павлова Е. А. Диагностика профессиональной компетентности студентов ИТ-направлений на основе данных цифрового следа // Информатика и образование. 2020. № 4. С. 4–11. DOI: 10.32517/0234-0453-2020-35-4-4-11
22. Zawacki-Richter O., Marín V. I., Bond M., Gouverneur F. Systematic review of research on artificial intelligence applications in higher education – where are the educators? // International Journal of Educational Technology in Higher Education. 2019. № 16(1). P. 1–27. DOI: 10.1186/s41239-019-0171-0
23. Schröer C., Kruse F., Gómez J. M. A Systematic literature review on applying CRISPDM process model // Procedia Computer Science. 2021. Vol. 18. P. 526–534. DOI: 10.1016/j.procs.2021.01.199
24. Боргест Н. М. Стратегии интеллекта и его онтологии: попытка разобраться // Онтология проектирования. 2019. Т. 9, № 4. С. 407-428. DOI: 10.18287/2223-9537-2019-9-4-407-428
25. George G., Lal A. M. Review of ontology-based recommender systems in e-learning // Computers & Education. 2019. Vol. 142. DOI: 10.1016/j.compedu.2019.103642. Available from: https://www.sciencedirect.com/science/article/pii/S0360131519301952 (date of access: 30.07.2021).
26. Guo S., Zeng D., Dong S. Pedagogical data analysis via federated learning toward Education 4.0 // American Journal of Education and Information Technology. 2020. № 4 (2). P. 56–65. DOI: 10.11648/j.ajeit.20200402.13
27. Arrieta A. B., Díaz-Rodríguez N., Del Ser J., Bennetot A., Tabik S., Barbado A., et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities, and challenges toward responsible AI // Information Fusion. 2020. Vol. 58. P. 82–115. DOI: 10.1016/j.inffus.2019.12.012
28. Zhou W., Han W. Personalized recommendation via user preference matching // Information Processing & Management. 2019. № 56 (3). P. 955–968. DOI: 10.1016/j.ipm.2019.02.002
Review
For citations:
Zakharova I.G., Vorobeva M.S., Boganyuk Yu.V. Support of individual educational trajectories based on the concept of explainable artificial intelligence. The Education and science journal. 2022;24(1):163-190. (In Russ.) https://doi.org/10.17853/1994-5639-2022-1-163-190