Análisis bibliométrico de la investigación sobre el cambio climático: La educación en el uso del agua
https://doi.org/10.17853/1994-5639-2024-3-176-193
Resumen
Introducción. La población tiene derecho a recibir información sobre los recursos que consume. Dado el aumento de la contaminación ambiental, es necesario educar a todos sobre el uso del agua. Esto permitirá exigir su calidad y contribuir a la adaptación provocada por el cambio climático.
Objetivo. El estudio pretende realizar un análisis bibliométrico del uso del agua en el contexto del cambio climático.
Metodología y métodos de investigación. Para este estudio se utilizó el método PRISMA. Se seleccionó la base de datos Scopus por su carácter multidisciplinar. El término de búsqueda se cotejó con el Tesauro de la UNESCO. Los datos se analizaron utilizando el software R-studio y la interfaz Biblioshiny.
Resultados. Se analizaron 1738 documentos y se verificó que el tema de investigación cuadruplicó su producción científica desde 2012. Se comprobó que la mayor producción científica es de 18 documentos por autor, siendo las revistas suizas ubicadas en el cuartil 1 de Scopus las que más destacan y priorizan el tema de investigación. También destaca que los temas comunes de los documentos son el suministro de agua, la eficiencia en el uso del agua y la gestión del agua. En la misma línea, la conclusión es que es necesario cuestionar el uso injustificado del agua, pues de lo contrario, el recurso podría desaparecer.
Significado práctico. Este estudio demuestra la necesidad de que la población aprenda el significado del uso responsable del agua, por lo que se recomienda implementar la educación sobre el uso del agua para contrarrestar los efectos del cambio climático.
Palabras clave
De los autores
E. M. Barturen MondragónPeru
Eliana Maritza Barturen Mondragón: Docente, Escuela de posgrado,
Chiclayo.
G. A. Quezada Castro
Peru
Guillermo Alexander Quezada Castro: Docente, Facultad de Derecho,
Lima.
M. del P. Quezada Castro
Peru
María del Pilar Quezada Castro: Docente, Facultad de Derecho,
Lima.
M. del P. Castro Arellano
Peru
María del Pilar Castro Arellano: Docente, Facultad de Derecho,
Lima.
Referencias
1. Moroni F., Gascon-Aldana P. J., Rogiers S. Y. Characterizing the efficacy of a film-forming antitranspirant on raspberry foliar and fruit transpiration. Biology. 2020; 9 (9): 255. DOI: 10.3390/biology9090255
2. Vastag E., Orlović S., Konôpková A., Kurjak D., Cocozza C., Pšidová E., et al. Magnolia grandiflora L. shows better responses to drought than Magnolia × soulangeana in an urban environment. iForest – Biogeosciences and Forestry. 2020; 13 (6): 575–583. DOI: 10.3832/ifor3596-013
3. Janssen J., Radić V., Ameli A. Assessment of future risks of seasonal municipal water shortages across North America. Frontiers Earth Science. 2021; 9: 730631. DOI: 10.3389/feart.2021.730631
4. Taylor R. G., Scanlon B., Döll P., Rodell M., Van Beek R., Wada Y., et al. Ground water and climate change. Nature Climate Change. 2013; 3 (4): 322–329. DOI: 10.1038/nclimate1744
5. Trenberth K. E. Changes in precipitation with climate change. Climate Research. 2011; 47: 123–138. DOI: 10.3354/cr00953
6. Hatfield J. L., Boote K. J., Kimball B. A., Ziska L. H., Izaurralde R. C., Ort D. R., et al. Climate impacts on agriculture: Implications for crop production. Agronomy Journal. 2011; 103 (1): 351–370. DOI: 10.2134/agronj2010.0303
7. Azzeddine C., Mostapha B., Houria C. Influence of regulated drip irrigation on productivity and physicochemical traits of tomato “tofane” under hot desert climate. Sciendo. 2020; 28 (1): 93–100. DOI: 10.2478/johr-2020-0001
8. Phogat V., Mallants D., Šimůnek J., Cox J. W., Petrie P. R., Pitt T. Modelling salinity and sodicity risks of long-term use of recycled water for irrigation of horticultural crops. Soil Systems. 2021; 5 (3): 49. DOI: 10.3390/soilsystems5030049
9. Aria M., Cuccurullo C. Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics. 2017; 11 (4): 959–975. DOI: 10.1016/j.joi.2017.08.007
10. Gorraiz J. Los mil y un reflejos de las publicaciones en el laberinto de espejos de las nuevas métricas. El Profesional de la Información. 2018; 27 (2): 231–236. DOI: 10.3145/epi.2018.mar.01 (In Spanish)
11. Franklin J., Serra-Díaz J. M., Syphard A. D., Regan H. M. Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences of the USA. 2016; 113 (14): 3725–3734. DOI: 10.1073/pnas.1519911113
12. Steffen W., Richardson K., Rockström J., Cornell S. E., Fetzer L., Bennett E. M., et al. Planetary boundaries: Guiding human development on a changing planet. Science. 2015; 347 (6223): 736–746. DOI: 10.1126/science.1259855
13. Tomas C. D., Cameron A., Verde R. E., Bakkenes M., Beaumont Linda J., Collingham Y. C., et al. Extinction risk from climate change. Nature. 2004; 427: 145–148. DOI: 10.1038/nature02121
14. Urban M. C. Accelerating extinction risk from climate change. Science. 2015; 348: 571–573. DOI: 10.1126/science.aaa4984
15. Karl T. R., Trenberth K. E. Modern global climate change. Science. 2003; 302: 1719–1723. DOI: 10.1126/science.1090228
16. Adger W. N., Huq S., Brown K., Declan C., Mike H. Adaptation to climate change in the developing world. Progress in Development Studies. 2003; 3 (3): 179–195. DOI: 10.1191/1464993403ps060oa
17. Tshimanga R. M., Lutonadio G.-S. K., Kabujenda N. K., Sondi C. M., Mihaha E.-T. N., Ngandu J.- F. K., et al. An integrated information system of climate-water-migrations-conflicts nexus in the Congo Basin. Sustainability. 2021; 13 (16): 9323. DOI: 10.3390/su13169323
18. Rasmussen S., Warziniack T., Neel A., O’Neil-Dunne J., McHale M. When small is not beautiful: The unexpected impacts of trees and parcel size on metered water-use in a semi-arid city. Remote Sensing. 2021; 13: 998. DOI: 10.3390/rs13050998
19. Sun H., Kjelgren R., Dukes M. D., Beeson R. C. Magnolia and viburnum plant factors at different growing seasons and allowed depletion levels in a monsoonal climate. Water. 2021; 13 (13): 1744. DOI: 10.3390/w13131744
20. Sunday O., Mourad K. Modelling the impacts of climate change on soybeans water use and yields in Ogun-Ona River Basin, Nigeria. Agriculture. 2020; 10 (12). DOI: 10.3390/agriculture10120593
21. Ward F. A., Pulido-Velazquez M. Water conservation in irrigation can increase water use. PNAS.2008; 105 (47): 18215–18220. DOI: 10.1073/pnas.0805554105
22. Payus C., Huey L. A., Adnan F., Besse A., Mohan G., Chapagain S. K., et al. Impact of extreme drought climate on water security in North Borneo: Case study of Sabah. Water. 2020; 12 (4): 11–35. DOI: 10.3390/w12041135
23. Huang K., Wang Q., Otieno D. Responses of sap flux densities of different plant functional types to environmental variables are similar in both dry and wet seasons in a subtropical mixed forest. Forests. 2021; 12 (8): 1007. DOI: 10.3390/f12081007
24. Schäffer R., Sass L., Blümmel C., Schmidt S. Hydrochemistry of the Tuxertal, NW Tauern Window, Austria: Water use and drinking water supply in an alpine environment. Journal of Maps. 2021; 17 (2): 197–213. DOI: 10.1080/17445647.2021.1899066
25. Nakayama T. Impact of water degradation on ecosystem change and adaptation strategy for sustainable development. WIT Transactions on Ecology and the Environment. 2011; 153: 139–150. DOI: 10.2495/WS110131
26. Schneider F., Bonriposi M., Graefe O., Herweg K., Homewood C., Huss M., Kauzlaric M., et al. MontanAqua: Tackling water stress in the Alps. Water management options in the Crans-Montana-Sierre Region (Valais). GAIA. 2016; 25 (3): 191–193. DOI: 10.14512/gaia.25.3.11
27. Khanal R., Dhungel S., Brewer S., Barber M. E. Statistical modeling to predict climate change effects on watershed scale evapotranspiration. Atmosphere. 2021; 12 (12): 1565. DOI: 10.3390/atmos12121565
28. Liang L., Zhang F., Qin K. Assessing the vulnerability of agricultural systems to drought in Kyrgyzstan. Water. 2021; 13 (21): 3117. DOI: 10.3390/w13213117
29. Yazici Ö. Awareness of hydrography courses students on protection of freshwater resources. Review of International Geographical Education (RIGEO). 2020; 10 (1): 97–119. DOI: 10.33403/rigeo.634906
30. Re V., Mon M., Tringali C., Mya M., Destefanis E., Sacchi E. Laying the groundwork for raising awareness on water related issues with a socio-hydrogeological approach: The Inle Lake case study (Southern Shan State, Myanmar). Water. 2021; 13 (17): 2434. DOI: 10.3390/w13172434
31. Ricci P. F. Water demand, supply, and quality in the United States: Sustainability of water uses. International Journal of Sustainable Development and Planning. 2007; 2 (3): 302–331. DOI: 10.2495/SDPV2-N3-302-331
32. Ogundeji A. A., Jordaan H., Groenewald J. Economics of climate change adaptation: A case study of Ceres – South Africa. Climate and Development. 2016; 10 (4): 1–8. DOI: 10.1080/17565529.2017.1301866
33. Haddaway N. R., Page M. J., Pritchard C. C., McGuinness L. A. PRISMA2020: Un paquete R y una aplicación Shiny para producir diagramas de flujo compatibles con PRISMA 2020, con interactividad para una transparencia digital optimizada y síntesis abierta. Campbell Systematic Reviews. 2022; 18: e1230. DOI: 10.1002/cl2.1230 (In Spanish)
34. Donthu N., Kumar S., Mukherjee D., Pandey N., Lim W. How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research. 2021; 133: 285–296. DOI: 10.1016/j.jbusres.2021.04.070
Recensión
Para cita:
Barturen Mondragón E.M., Quezada Castro G.A., Quezada Castro M., Castro Arellano M. Análisis bibliométrico de la investigación sobre el cambio climático: La educación en el uso del agua. EDUCACIÓN Y CIENCIA. 2024;26(3):176-193. https://doi.org/10.17853/1994-5639-2024-3-176-193
For citation:
Barturen Mondragón E.M., Quezada Castro G.A., Quezada Castro M., Castro Arellano M. Bibliometric analysis of climate change research: Education in water use. The Education and science journal. 2024;26(3):176-193. https://doi.org/10.17853/1994-5639-2024-3-176-193