Preview

The Education and science journal

Advanced search

Development and validation of School Mental Skills Assessment Scale (SMSAS)

https://doi.org/10.17853/1994-5639-2024-6-95-111

Abstract

Introduction. Currently, the assessment of school mental skills is of practical interest. Aim. The present research aims to construct and validate a scale for assessing mental skills of schoolchildren. Methodology and research methods. The methodology was built using G. Churchill’s paradigm (1979) adapted to the tasks of the study, which included four stages: building a list of elements; analysing the accuracy of the SMS message scale; analysing inter-factor correlations; and analysing the validity of the scale. To test the methodology based on emotional, cognitive and metacognitive strategies on a voluntary basis, the authors distributed the scale to 311 actors in the Moroccan education system: students, teachers, inspectors and trainers. Results and scientific novelty. The findings indicated that by utilising exploratory factor analysis (EFA), the authors uncovered three distinct factors that compose the school mental competency evaluation scale, resulting in a score of 79.416%. Additionally, when evaluating semantic consistency, the KMO index exceeded the suggested threshold of 0.70. Finally, the assessment of “internal consistency” and “coherence” was exemplified by a notably elevated Cronbach’s alpha value of 0.848. Practical significance. The results obtained can be used as a tool for teachers and educationalists to assess school mental skills.

About the Authors

Oussama Bouiri
Hassan II University
Morocco

Oussama Bouiri – PhD Student, Faculty of Sciences Ben M’sik, Laboratory of Analytical Chemistry and Physico-Chemistry of Materials,

Casablanca.



Said Lotfi
Hassan II University;
Morocco

Said Lotfi – Dr. Sci. (Training in Educational Engineering and Research Methodology), Director of Multidisciplinary Laboratory in Education Sciences and Training Engineering (LMSEIF), Normal Higher School (ENS-C),

Casablanca.



Mohammed Talbi
Hassan II University
Morocco

Mohammed Talbi – Dr. Sci. (State in Sciences, Evaluating Analysis Processes and Educational Systems), 

Casablanca.



References

1. Khalil M.K., Williams S.E., Hawkins H.G. The use of learning and study strategies inventory (LASSI) to investigate differences between low vs high academically performing medical students. Medical Science Educator. 2020;30(1):287–292. doi: 10.1007/s40670-019-00897-w

2. Popandopulo A., Kudysheva A., Fominykh N., Nurgaliyeva M., Kudarova N. Assessment of students’ metacognitive skills in the context of education 4.0. Frontiers in Education. 2023;8. doi: 10.3389/feduc.2023.1182377

3. Galal S., Vyas D., Ndung’u M., Wu G., Webber M. Assessing learner engagement and the impact on academic performance within a virtual learning environment. Pharmacy (Basel). 2023;11(1). doi: 10.3390/pharmacy11010036

4. Li S. Measuring cognitive engagement: an overview of measurement instruments and techniques. International Journal of Psychology and Educational Studies. 2022;8(3):63–76. doi: 10.52380/ijpes.2021.8.3.239

5. Cracco E., Van Durme K., Braet C. Validation of the FEEL-KJ: an instrument to measure emotion regulation strategies in children and adolescents. PLoS One. 2015;10(9):e0137080. doi: 10.1371/journal.pone.0137080

6. Vaculíkova J. The third round of the Czech validation of the Motivated Strategies for learning Questionnaire (MSLQ). International Education Studies. 2016;9(7):35. doi: 10.5539/ies.v9n7p35

7. Pintrich P., Smith D., García T., Mckeachie W. A Manual for the Use of the Motivated Strategies for Learning Questionnaire (MSLQ). Ann Arbor, MI; 1991. 76 p.

8. Jackson C.R. Validating and adapting the Motivated Strategies for Learning Questionnaire (MSLQ) for STEM courses at an HBCU. AERA Open. 2018;4(4):233285841880934. doi: 10.1177/2332858418809346

9. Warr P., Downing J. Learning strategies, learning anxiety and knowledge acquisition. British Journal of Psychology. 2000;91(3):311–333. doi: 10.1348/000712600161853

10. Martins L.B., Zerbini T., Medina F.J. Learning strategies scale: adaptation to Portuguese and factor structure. Psicologia. 2018;31(1). doi: 10.1186/s41155-018-0092-1

11. França L.H., Amorim S.M., Pedreiro A.T., Loureiro H.M. Retirement resources inventory in Portugal: an adaptation and validation study. Paidéia (Ribeirão Preto). 2022;32:e3213. doi: 10.1590/1982-4327e3213

12. Cabrera N.J., Shannon J.D., Tamis-LeMonda C. Fathers’ influence on their children’s cognitive and emotional development: from toddlers to pre-K. Applied Developmental Science. 2007;11(4):208–213. doi: 10.1080/10888690701762100

13. Churchill G. A paradigm for developing better measures of marketing constructs. Journal of Marketing Research. 1979;16(1):64–73. doi: 10.1177/002224377901600110

14. Beyera G.K., O’Brien J., Campbell S. The development and validation of a measurement instrument to investigate determinants of health care utilisation for low back pain in Ethiopia. PLoS One. 2020;15(1):e0227801. doi: 10.1371/journal.pone.0227801

15. Souza A.C., Alexandre N.M., Guirardello E.B. Propriedades psicométricas na avaliação de instrumentos: avaliação da confiabilidade e da validade. Epidemiologia e Serviços de Saúde. 2017;26(3):649–659. (In Portuguese) doi: 10.5123/s1679-49742017000300022

16. Hurley A.E., Scandura T.A., Schriesheim C.A., Brannick M.T., Seers A., Vandenberg R.J. Exploratory and confirmatory factor analysis: guidelines, issues, and alternatives. Journal of Organizational Behavior. 1997;18(6):667–683. doi: 10.1002/(sici)1099-1379(199711)18:6<667::aid-job874>3.0.co;2-t

17. Acal C., Aguilera A.M., Escabias M. New modeling approaches based on Varimax rotation of functional principal components. Mathematics. 2020;8(11):2085. doi: 10.3390/math8112085

18. Bourque J., Poulin N., Cleaver A. F. Évaluation de l’utilisation et de la présentation des résultats d’analyses factorielles et d’analyses en composantes principales en éducation. Review Sciences d’Éducation. 2007;32(2):325–344. (In French) doi: 10.7202/014411ar

19. Nunnally J.C. An overview of psychological measurement. In: Wolman B.B., ed. Clinical Diagnosis of Mental Disorders. Boston, MA: Springer US; 1978:97–146.

20. Peterson R.A. Une méta-analyse du coefficient alpha de Cronbach. Recherche et Applications en Marketing. 1995;10(2):75–88. doi: 10.1177/076737019501000204

21. Kaiser H.F. The application of electronic computers to factor analysis. Education Psychology Measurement. 1960;20(1):141–151. doi: 10.1177/001316446002000116

22. Weinstein C., Mayer R. The teaching of learning strategies. In: Wittrock M., ed. Handbook of Research on Teaching. Macmillan, New York; 1986. p. 315–327.

23. Hrimech M. Les stratégies d’apprentissage en contexte d’autoformation. In: Foucher R., Hrimech M., eds. L’autoformation dans l’enseignement supérieur: apports Européens et Nord-Américains pour l’an. Montréal, Québec: Éditions Nouvelles; 2000:99–113. (In French)

24. Schraw G. Promoting general metacognitive awareness. In: Hartman H., ed. Metacognition in Learning and Instruction. Dordrecht: Springer Netherlands; 2001:3–16.

25. Gardès N. Development and validation of manager’s relational competence scale measure and analysis of its impact on financial support. Finance Contrôle Stratégie. 2018;21–1. doi: 10.4000/fcs.2038

26. Alexander P.A., Murphy P.K. Profiling the differences in students’ knowledge, interest, and strategic processing. Journal of Educational Psychology. 1998;90(3):435–447. doi: 10.1037/0022-0663.90.3.435

27. Neuenhaus N., Artelt C., Lingel K., Schneider W. Fifth graders’ metacognitive knowledge: general or domain-specific? European Journal of Psychology of Education. 2011;26:163–178.

28. Altet M. Caractériser, expliquer et comprendre les pratiques enseignantes pour aussi contribuer à leur évaluation. Les Dossiers Des Sciences de l’Éducation. 2003;10(1):31–43. (In French) doi: 10.3406/dsedu.2003.1027

29. Lockl K., Attig M., Nusser L., Wolter I. Cognitive and affective-motivational factors as predictors of students’ home learning during the school lockdown. Frontiers in Psychology. 2021;12. doi: 10.3389/fpsyg.2021.751120

30. Shi Y., Qu S. Analysis of the effect of cognitive ability on academic achievement: moderating role of self-monitoring. Frontiers in Psychology. 2022;13. doi: 10.3389/fpsyg.2022.996504

31. Schneider S., Beege M., Nebel S., Schnaubert L., Rey G.D. The Cognitive-Affective-Social Theory of Learning in digital Environments (CASTLE). Education Psychology Review. 2022;34(1):1–38. doi: 10.1007/s10648-021-09626-5

32. Hancock G.R., Mueller R.O. The Reviewer’s Guide to Quantitative Methods in the Social Sciences. New York: Routledge; 2010. 432 p.

33. Ruph F. Les effets d’un programme particulier d’éducation cognitive, l’atelier d’efficience cognitive, sur le changement des stratégies d’apprentissage d’étudiants universitaires. Thesis. Ann Arbor, United States; 1999. 319 p. (In French)

34. Fé E., Gill D., Prowse V. Cognitive skills, strategic sophistication, and life outcomes. The Journal of Political Economy. 2022;130(10):2643–2704. doi: 10.1086/720460

35. Blanchard S.P., Perrenoud. Développer la pratique réflexive dans le métier d’enseignant. L’Orientation Scolaire et Professionnelle. 2002;31/1. (In French) doi: 10.4000/osp.4894


Review

For citations:


Bouiri O., Lotfi S., Talbi M. Development and validation of School Mental Skills Assessment Scale (SMSAS). The Education and science journal. 2024;26(6):95-111. https://doi.org/10.17853/1994-5639-2024-6-95-111

Views: 571


ISSN 1994-5639 (Print)
ISSN 2310-5828 (Online)