Professional training for future physics teachers through immersion in a high-tech educational environment
https://doi.org/10.17853/1994-5639-2025-5-9-39
Abstract
Introduction. Improving the quality of physics education for both schoolchildren and teachers can be achieved through an updated curriculum and innovative teaching methods. This approach includes fostering a comprehensive understanding of the physical world through experimental activities that utilise modern high-tech equipment.
Aim. The present research aims to develop a methodology for preparing physics students for professional activities by actively immersing them in a high-tech educational environment. This approach seeks to enhance the quality of higher education in physics pedagogy.
Methodology and research methods. The methodological foundations of the study were based on synergistic, systemic, competence-based, activity-oriented, and task-modular approaches. Throughout the study, both theoretical methods (including literature analysis, hypothesis construction, modeling, generalisation, and interpretation of results) and experimental methods (such as confirmatory and exploratory pedagogical experiments) were employed. To evaluate the experimental activities, an observational method was utilised, which involved video recordings of classroom sessions conducted with students.
Results. The authors developed a system designed to prepare physics students for professional activities, which includes five research modules implemented during classroom sessions through high-tech experimental tasks. Additionally, there is a transitional module that integrates classroom work with the resolution of high-tech experimental tasks, generalising theoretical modules with educational materials and a system for assessing training outcomes. The authors also created a model for diagnosing educational results from the study of these modules, as well as a model for collecting data on “task” actions. The validation of the proposed methodological system confirmed its effectiveness. A significant characteristic of the training modules is their relative autonomy, allowing students to master them in various sequences.
Scientific novelty. The authors have developed a methodological system for teaching physics that leverages a high-tech educational environment. This approach enhances students’ motivation to understand the laws governing physical processes and phenomena.
Practical significance. The task-modular approach can be utilised in preparing students at a pedagogical university for professional activities, particularly when transitioning to foundational pedagogical education while developing teaching systems for various disciplines.
Keywords
About the Authors
N. S. PuryshevaRussian Federation
Natalia S. Purysheva – Dr. Sci. (Education), Professor, Department of Theory and Methods of Teaching Physics named after A. V. Peryshkin
Moscow
K. O. Teplyakova
Russian Federation
Ksenia O. Teplyakova – Head of the Laboratory of the Department of General and Experimental Physics
Scopus Author ID 57191363212
Moscow
G. M. Chulkova
Russian Federation
Galina M. Chulkova – Dr. Sci. (Physics and Mathematics), Associate Professor, Professor, Department of General and Experimental Physics
Moscow
M. D. Soldatenkova
Russian Federation
Maria D. Soldatenkova – Teaching Assistant, Department of General and Experimental Physics
Moscow
S. V. Lozovenko
Russian Federation
Sergey V. Lozovenko – Cand. Sci. (Education), Associate Professor, Department of Theory and Methods of Teaching Physics named after A. V. Peryshkin
Moscow
References
1. Demidova N.N., Golovina I.V., Medvedeva T.Yu., Paputkova G.A., Votintsev A.V. Modeling project activities of future teachers in the context of the innovative infrastructure of pedagogical universities: integrative solutions. Obrazovanie i nauka = The Education and Science Journal. 2024;26(9):12– 41. (In Russ.) doi:10.17853/1994-5639-2024-9-12-41
2. Varaksina E.I. Improving the methodology for forming the basic competence of future physics teachers. Fundamental’nyye issledovaniya = Fundamental Research. 2012;11(6):1356–1359. (In Russ.) Accessed December 16, 2024. https://s.fundamental-research.ru/pdf/2012/11-6/30797.pdf
3. Moshkov S.S. Eksperimental’nye zadachi po fizike = Experimental Problems in Physics. Leningrad: Publishing House Uchpedgiz; 1955. 204 p. (In Russ.) Accessed December 16, 2024. https://fiz-muz-spb.ucoz.net/load/biblioteka/zadachniki/moshkov_s_s_ehksperimentalnye_zadachi_po_fizike_v_srednej_shkole/9-1-0-219
4. Antipin I.G. Eksperimental’nye zadachi po fizike v 6–7 klassah = Experimental Problems in Physics in Grades 6–7. Moscow: Publishing House Prosveshchenie; 1974. 130 p. (In Russ.) Accessed December 16, 2024. https://sovietime.ru/fizika/eksperimentalnye-zadachi-po-fizike-6-7-klassy-1974-god-sovetskij-uchebnik-skachat
5. Shapovalov A.A., Andreeva L.E. Zadachnyj podhod k eksperimental’noj podgotovke uchitelya fiziki = Problem-Based Approach to Experimental Training of Physics Teachers. Barnaul: Altai State Pedagogical University; 2021. 208 p. (In Russ.) Accessed December 16, 2024. https://library.altspu.ru/dc/pdf/shapovalov4.pdf
6. Shapovalov A.A. Pedagogicheskoe konstruirovanie eksperimental’nyh zadach s ispol’zovaniem datchikov fizicheskih velichin = Pedagogical Design of Experimental Problems Using Sensors of Physical Quantities: A Tutorial. Barnaul: Altai State Pedagogical University; 2017. 177 p. (In Russ.) Accessed December 16, 2024. https://icdlib.nspu.ru/views/icdlib/5980/read.php
7. Shapovalov A.A. Eksperimental’nyj podhod k professional’noj podgotovke uchitelya fiziki = Experimental Approach to Professional Training of a Physics Teacher. Barnaul: Altai State Pedagogical University; 2024. 352 p. (In Russ.) doi:10.37386/978-5-907487-58-1
8. Shapovalov A.A., Andreeva L.E. Preparing students for the design and solution of experimental problems in physics. Mir nauki, kul’tury, obrazovaniya = World of Science, Culture, Education. 2018;71(4):279–281. (In Russ.) Accessed December 16, 2024. https://cyberleninka.ru/article/n/podgotovka-studentov-k-konstruirovaniyu-i-resheniyu-eksperimentalnyh-zadach-po-fizike/viewer
9. Etkina E., Van Heuvelen A., Brookes D.T., Mills D. Role of experiments in physics instruction. The Physics Teacher. 2002;40:351–355. doi:10.1119/1.1511592
10. Etkina E. Millikan award lecture: students of physics – listeners, observers, or collaborative participants in physics scientific practices? American Journal of Physics. 2015;83:669–679. doi:10.1119/1.4923432
11. Etkina E., Van Heuvelen A. investigative science learning environment – a science process approach to learning physics. In: Redish E., Cooney P., eds. Research-Based Reform of University Physics. Vol. 1. College Park: American Association of Physics Teachers; 2007. Accessed October 25, 2024. https://www.compadre.org/PER/per_reviews/media/volume1/ISLE-2007.pdf
12. Etkina E., Van Heuvelen A., Karelina A., Ruibal-Villasenor M. Spending time on design: does it hurt physics learning? AIP Conference Proceedings. 2007;951:88–91. doi:10.1063/1.2820955
13. Poklinek Čančula M., Planinšič G., Etkina E. Analyzing patterns in experts’ approaches to solving experimental problems. American Journal of Physics. 2015;83(4):366–374. doi:10.1119/1.4913528
14. Rosengrant D., Van Heuvelen A., Etkina E. Case study: students’ use of multiple representations in problem solving. AIP Conference Proceedings. 2006;818(1):49–52. doi:10.1063/1.2177020
15. Hidayah M.F. Designing infographics for the educational technology course: perspectives of preservice science teachers. Journal of Baltic Science Education. 2018;17(1):8–18. doi:10.33225/jbse/18.17.08
16. Hare J. A simple demonstration for exploring the radio waves generated by a mobile phone. Physicseducation.2010;45(5):481–486. doi:10.1088/0031-9120/45/5/004
17. Etkina E., Planinšič G., Vollmer M. A simple optics experiment to engage students in scientific inquiry. American Journal of Physics. 2013;81(11):815–822. doi:10.1119/1.4822176
18. Lattery M., Dobbs S., Lattery G. An undergraduate entryway into experimental particle physics. American Journal of Physics. 2024;92:907–908. doi:10.1119/5.0214640
19. Shah K., Butler J., Knaub A.V., Zenginoğlu A., Ratcliff W., Soltanieh-ha M. Data science education in undergraduate physics: Lessons learned from a community of practice.American Journal of Physics. 2024;92:655–662. doi:10.1119/5.0203846
20. Petrova E.B., Chulkova G.M. Fizika XXI veka: voprosy prepodavaniya. Kak donesti do shkol’nikov i studentov krasotu sovremennoj fiziki = Physics of the 21st Century: Teaching Issues. How to Convey the Beauty of Modern Physics to Schoolchildren and Students. Moscow: Publishing House Lenand; 2019, 304 p. (In Russ.) Accessed December 16, 2024. https://istina.pskgu.ru/publications/book/233099962
21. Chulkova G.M., Petrova E.B. To the issue regarding the content of the future specialists training in the field of modern optics and photonics. Journal of Physics: Conference Series (JPCS). 2020;1691:012038. doi:10.1088/1742-6596/1691/1/012038
22. Korkmaz C., Correia A.-P. A review of research on machine learning in educational technology. Educational Media International. 2019;56(6). doi:10.1080/09523987.2019.1669875
23. Jiang X., Kittredge A., Hopman E. 4 Learnings from Duolingo Efficacy Studies. Accessed December 12, 2024. https://blog.duolingo.com/results-duolingo-efficacy-studies
24. Luan H., Tsai C.C. A review of using machine learning approaches for precision education. Educational Technology & Society. 2021;24(1):250–266. Accessed December 12, 2024. https://www.jstor.org/stable/26977871
25. Lvovsky V.A. Nonlinear process chart and other tools for organizing a lesson with built-in diagnostics. Uchitel’ Altaya = Teacher of Altai. 2023;4(17):6–17. (In Russ.) Accessed December 17, 2024. https://www.elibrary.ru/item.asp?id=65634734
26. Soldatenkova M.D., Chulkova G.M. On approaches to the implementation of experimental activities in physics. Fizika v shkole = Physics at School. (In Russ.) 2022;7:28–34. doi:10.47639/01305522_2022_7_28
27. Baeva E.M., Lomakin A.I., Shiryaeva Yu.A., Kolbatova A.I. Physics on a smartphone screen: examples of experimental tasks. Fizika v shkole = Physics at School. (In Russ.) 2023;8:35–41. doi:10.47639/01305522_2023_8_35
28. Goltsman G.N., Purysheva N.S., Lvovsky V.A., Chulkova G.M., Adamsky A.I., Petrova E.B., et al. Eksperimental’naya deyatel’nost’ uchashchihsya – osnova obucheniya fizike v sovremennoj shkole = Experimental Activity of Students is the Basis for Teaching Physics in a Modern School. Moscow: Publishing House Prometey; 2023. 218 p. (In Russ.) Accessed December 16, 2024. https://sprometej.su/magazin/product/golcman-g-n-purysheva-n-s-lvovskij-v-a-i-dr-eksperimentalnaya-deyatelnost-uchashchihsya-osnova-obucheniya-fizike-v-sovremennoj-shkole-monografiya
29. Petrova E.B., Chulkova G.M. Determination of the thermal conductivity coefficient of metals by available means. Fizika v shkole = Physics at School. 2024;1:46–51. (In Russ.) doi:10.47639/01305522_2024_1_46
30. Petrova E.B., Chulkova G.M. Video analysis in life and education. Problemy sovremennogo obrazovaniya = Problems of Modern Education. 2024;3:243–254. (In Russ.) doi:10.31862/2218-87112024-3-243-254
31. Chulkova G.M., Petrova E.B., Teplyakova K.O., Soldatenkova M.D., Sedykh K.O., Lazarev M.A. Experimental problems in optics. Fizika v shkole = Physics at School. 2024;2:49–54. (In Russ.) doi:10.47639/0130-5522_2024_2_49
32. Maslak A. A. Teoriya i praktika izmereniya latentnyh peremennyh v obrazovanii = Theory and Practice of Measuring Latent Variables in Education. Moscow: Publishing House Yurait; 2024. 255 p. (In Russ.) Accessed December 17, 2024. https://urait.ru/bcode/537005
33. Kupriyanov R.B., Zvonarev D.Yu. Development of a model for predicting educational outcomes of students for universities. Iskusstvennyj intellekt i prinjatie reshenij = Artificial Intelligence and Decision Making. 2021;2:11–20. (In Russ.) doi:10.14357/20718594210202
34. Yakunin Yu.Yu., Shestakov V.N., Liksonova D.I., Danichev A.A. Forecasting student learning outcomes using machine learning tools. Informatika i obrazovaniye = Computer Science and Education. 2023;38(4):28–43. (In Russ.) doi:10.32517/0234-0453-2023-38-4-28-43
35. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., et al. Scikit-learn: machine learning in Python. The Journal of Machine Learning Research. 2011;12:2825–2830. doi:10.48550/arXiv.1201.0490
36. Adamsky A.I., Podbolotova M. I., Ustyugova O. B., Kolachev N. I. Development of a model of teachers’ activities using high-tech educational tools (instruments) based on the reconstruction of activities and description of operations (actions). Vestnik Moskovskogo gorodskogo pedagogicheskogo universiteta. Serija “Pedagogika i psihologija” = Bulletin of the Moscow City Pedagogical University. Series “Pedagogy and Psychology”. 2024;18(1-1):140–164. (In Russ.) doi:10.25688/2076-9121.2024.18.11.07
37. Lazarev M. A., Purysheva N.S., Sedykh K.O., Soldatenkova M.D., Teplyakova K.O., Chulkova G.M., Shipovskaya S.V. Results of testing a model of a modular program in physics with new content based on experimental tasks: analysis of reflections of students – future teachers of physics and computer science. Shkola Budushchego = School of the Future. 2023;5:76–91. (In Russ.) doi:10.55090/19964552_2023_5_76_91
Review
For citations:
Purysheva N.S., Teplyakova K.O., Chulkova G.M., Soldatenkova M.D., Lozovenko S.V. Professional training for future physics teachers through immersion in a high-tech educational environment. The Education and science journal. 2025;27(5):9-39. (In Russ.) https://doi.org/10.17853/1994-5639-2025-5-9-39