Transdisciplinary role of physical and mathematical disciplines in modern natural science and engineering education
https://doi.org/10.17853/1994-5639-2023-7-14-43
Abstract
Introduction. In recent decades, a gradual degradation of mathematics and physics training in schools and universities has begun. Obviously, this has caused a significant decrease in the quality of professional training of students in the conditions of commercialisation and continuous reforms of education, and its chaotic digitalisation. At the same time, modern mathematics and physics have become the leader of the transdisciplinary trend in the natural, engineering, and other sciences of the digital era. The transdisciplinary trend generates a universal methodology capable of solving complex multifactorial interdisciplinary problems of nature and society. As a result of the transdisciplinary trend in science, such scientific fields as cybernetics, general systems theory, catastrophe theory, synergetics, artificial intelligence, big data, etc. have emerged. All these concepts were developed on the basis of the achievements of mathematics and physics over the past 70–80 years, which gave rise to the most unique practical achievements in modern, natural, and technical sciences.
Aim. The present research aims to explore transdisciplinarity role of physical and mathematical disciplines in modern natural science and engineering education.
Methodology and research methods. The system-based approach was used to analyse the role of mathematical and physical science systems in modern education. The synergetic approach became the basis for the study of the transdisciplinary trend of these systems in historical retrospect. In the methodology of these approaches, an important role was played by the methods of students’ holistic scientific worldviews formation, including ideas about the modern picture of the world of mathematics and physics. The authors applied the methods to develop student systems thinking (with its important quality of nonlinearity), which underlies the solution of multifactorial interdisciplinary tasks of their professional activity.
Results. The results of the analysis of the transdisciplinary role of physical and mathematical disciplines indicate the fundamental importance of the unique potential of these disciplines in the natural science and engineering education in the era of the computer revolution.
Scientific novelty. The authors identified, justified and characterised transdisciplinary ideas and methods (in mathematics and physics), which bring natural and engineering sciences to a higher level of cognition, thus contributing to improving the quality of natural science and engineering training of students at universities using a computer.
Practical significance. The research materials emphasise considerable practical importance to implement a transdisciplinary approach in didactics and methods of teaching physical and mathematical disciplines in the system of natural science, and engineering education. The research findings will be of interest to educational theorists and teachers, who conduct professional training of students of natural science and engineering fields and to everyone who is interested in the prosperous future of the educational system.
About the Authors
V. A. TestovRussian Federation
Vladimir A. Testov – Dr. Sci. (Education), Professor, Department of Mathematics
ResearcherID A-5900-2016
Scopus Author ID 57203921177
Vologda
E. A. Perminov
Russian Federation
Evgeniy A. Perminov – Dr. Sci. (Education), Associate Professor, Professor of the Department of Higher Mathematics and Physics
Ekaterinburg
References
1. Аrnold V. I. Eksperimentalnaya matematika = Experimental mathematics [Internet]. Moscow: Publishing House FAZIS; 2018 [2023 Mar 10]. 182 p. Available from: https://mccme.ru/arnold/books/VIAexp-math05.pdf (In Russ.)
2. Bailey D., Borwein J., Calkin N., Luke R., Girgensohn R., Moll V. Experimental mathematics in action. New York: CRC Press; 2007. 337 p. DOI: 10.1017/S0025557200185511
3. Prodakov E. M. Drevo komp’juternyh nauk = Tree of computer sciences. In: Naukovedcheskie issledovaniya = Scientific research. Sbornik nauchnyh trudov RAN = Collection of scientific papers of the Russian Academy of Sciences. Institut nauchnoj informacii po obshhestvennym naukam Rossijskoj akademii nauk = Institute of Scientific Information for Social Sciences of the Russian Academy of Sciences (INION RAN) [Internet]. Moscow: Publishing House Direct Media; 2012 [cited 2023 Mar 10]. p. 120–137. Available from: https://cyberleninka.ru/article/n/drevo-kompyuternyh-nauk (In Russ.)
4. Haggard G., Schlipf J., Whitesides S. Discrete mathematics for computer science [Internet]. Belmont, CA: Thomson Brooks/Cole; 2006 [cited 2023 Mar 10]. 600 p. Available from: https://booksdrive.org/wp-content/uploads/2022/02/Discrete-Mathematics-for-Computer-Science-pdf.pdf
5. Testov V. A., Perminov E. A. The role of mathematics in the transdisciplinarity of the content of modern education. Obrazovanie i nauka = The Education and Science Journal. 2021; 23 (3): 11–34. DOI: 10.17853/1994-5639-2021-3-11-34 (In Russ.)
6. Lysak I. V. Interdisciplinarity and transdisciplinarity as approaches to investigation of human being. Istoricheskie, filosofskie, politicheskie i juridicheskie nauki, kul’turologija i iskusstvovedenie. Voprosy teorii i praktiki = Historical, Philosophical, Political and Legal Sciences, Cultural Studies and Study of Art. Issues of Theory and Practice [Internet]. 2014 [cited 2023 Mar 10]; 6 (44), Part 2: 134–137. Available from: https://elibrary.ru/item.asp?id=21516125 (In Russ.)
7. Nicolescu B., Ertas A. Transdisciplinary, education, philosophy & applications [Internet]. Lubbock, Texas, USA: TheATLAS; 2014 [cited 2023 Feb 10]. 272 p. Available from: http://www.basarab-nicolescu.ciret-transdisciplinarity.org/BOOKS/Transdisciplinary_Education_Philosophy_Applications_2014.pdf
8. Krushanov A. A. “Transdisciplinary” trend in modern scientific knowledge. Tendencii razvitiya nauki i obrazovaniya = Trends in the Development of Science and Education. 2018; 42 (5): 77–80. DOI: 10.18411/lj-09-2018-106 (In Russ.)
9. Spaskov A. N. Transdisciplinary approach in science and education. In: Philosophical and Pedagogical Problems of Continuing Education: A Collection of Scientific Articles. Materials of the III International Scientific and Practical Conference [Internet]; 2018 Apr 26–27; Mogilev. Mogilev: A. A. Kuleshov Moscow State University; 2018 [cited 2023 Feb 10]. p. 48–52. Available from: https://elibrary.ru/item.asp?id=35653913 (In Russ.)
10. Alvargonzales D. Multidisciplinarity, interdisciplinarity, transdisciplinarity and sciences. International Studies in the Philosophy of Science. 2011; 25 (4): 387–403. DOI:10.1080/02698595.2011.623366
11. Frodeman R., Klein J. T., Mitcham C. The Oxford handbook of interdisciplinarity [Internet]. New York: Oxford University Press; 2010 [cited 2023 Feb 10]. 580 p. Available from: https://global.oup.com/academic/product/the-oxford-handbook-of-interdisciplinarity-9780198841647?sortField=2&lang=en&cc=us
12. Barrel D. M. Media security and transpressionalism mediasafety in modern discourse. Vestnik Chelyabinskogo gosudarstvennogo Universiteta = Bulletin of Chelyabinsk State University [Internet]. 2013[cited 2023 Feb 10]; 21 (312): 87–92. Available from: https://cyberleninka.ru/article/n/mediabezopasnost-i-transprofessionalizm-v-sovremennom-diskurse-smi (In Russ.)
13. Tejedor G., Segalas J., Rosas-Casals M. Transdisciplinarity in higher education for sustainability: How discourses are approached in engineering education. Journal of Cleaner Production. 2018; 175: 29–37. DOI: 10.1016/j.jclepro.2017.11.085
14. Scholz R. W., Steiner G., Transdisciplinarity at the crossroads. Sustainability Science. 2015; 10 (4): 521–526. DOI:10.1007//s11625-015-0338-0
15. Senashenko V. S. Competence approach in higher education: Myth and reality. Vysshee obrazovanie v Rossii = Higher Education in Russia [Internet]. 2014 [cited 2023 Feb 10]; 5: 34–45. Available from: https://cyberleninka.ru/article/n/kompetentnostnyy-podhod-v-vysshem-obrazovanii-mif-i-realnost (In Russ.)
16. Donskikh O. A. The case of competence approach. Vysshee obrazovanie v Rossii = Higher Education in Russia [Internet]. 2013 [cited 2023 Feb 10]; 5: 36–46. Available from: https://vovr.elpub.ru/jour/article/view/3550 (In Russ.)
17. Usoltsev A. P. Inflation of the competence-based approach in the Russian pedagogical science and practical teaching. Obrazovanie i nauka = The Education and Science Journal. 2017; 19 (1): 9–25. DOI: 10.17853/1994-5639-2017-1-9-25 (In Russ.)
18. Testov V. A. Content of modern education: choice of the path. Obrazovanie i nauka = The Education and Science Journal. 2017; 8 (19): 29–46. DOI: 10.17853/1994-5639-2017-8-29-46 (In Russ.)
19. Krasovskiy N. N. Reflections on mathematical education. Izvestiya UrGU = Proceedings of Ural State University [Internet]. 2003 [cited 2023 Feb 10]; 27: 5–12. Available from: https://psihdocs.ru/razmishleniya-o-matematicheskom-obrazovanii.htm (In Russ.)
20. Razumovsky V. G., Saurov Yu. A. The methodology of experimentation as a strategic resource for physical education. Sibirskiy Uchitel’ = Siberian Teacher [Internet]. 2012 [cited 2023 Feb 10]; 2: 5–13. Available from: http://www.sibuch.ru/node/824 (In Russ.)
21. Perminov E. A. Metodicheskaja sistema obuchenija diskretnoj matematike studentov pedagogicheskih napravlenij v aspekte integracii obrazovanija = Methodical system of teaching discrete mathematics to students of pedagogical directions in the aspect of integration of education [Internet]. 2nd ed. Ekaterinburg: Russian State Vocational Pedagogical University; 2019 [cited 2023 Feb 10]. 287 p. Available from: https://elar.rsvpu.ru/bitstream/123456789/28749/1/978-5-8050-0673-0.pdf (In Russ.)
22. Testov V. A. orjadkovye struktury v algebre i teorii chisel = Ordinal structures in algebra and number theory [Internet]. Moscow: Moscow State Pedagogical University; 1997 [cited 2023 Feb 10]. 110 p. Available from: https://search.rsl.ru/ru/record/01001792343 (In Russ.)
23. Klekovkin G. A., Perminov Е. А. Jelementy abstraktnoj i komp’juternoj algebry: v 4 ch. Ch. I: Algebry. Algebraicheskie sistemy = Elements of abstract and computer algebra: in 4 parts. Part I: Algebras. Algebraic systems. Samara: Samara Branch of Moscow City University; 2006. 73 p. (In Russ.)
24. Klekovkin G. A., Perminov Е. А. Jelementy abstraktnoj i komp'juternoj algebry: v 4 ch. Ch. II: Gruppy. Kol’ca = Elements of abstract and computer algebra: in 4 parts. Part II: Groups. Rings. Samara: Samara Branch of Moscow City University; 2006. 91 p. (In Russ.)
25. Perminov E. A., Testov V. A. Modelling methodology as the basis for implementation of an interdisciplinary approach in the training of students of pedagogical directions. Obrazovanie i nauka = The Education and Science Journal. 2020; 22 (6): 9–30. DOI: 10.17853/1994-5639-2020-6-9-30 (In Russ.)
26. Perminov E. A., Anakhov S. V., Grishin A. S., Savitskiy E. S. On the research of the methodology of mathematization of pedagogical science. International Journal of Environmental & Science Education [Internet]. 2016 [cited 2023 Feb 10]; 11 (16): 9339–9347. Available from: https://elar.rsvpu.ru/bitstream/123456789/15174/1/IJESE_1168_article_580d1691cfbf8.pdf
27. Sadovnichiy V. A. Traditions and modernity. Vysshee obrazovanie v Rossii = Higher Education in Russia [Internet]. 2003 [cited 2023 Feb 10]; 1: 11–18. Available from: https://cyberleninka.ru/article/n/traditsii-i-sovremennost (In Russ.)
28. Glass R. L. Facts and fallacies of software engineering [Internet]. USA: Addison-Wesley Professional; 2002 [cited 2023 Feb 10]. 216 p. Available from: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.2037&rep=rep1&type=pdf
29. Testov V. A. Mathematics as a major means for developing student thinking in the digital age. In: Matematika – osnova kompetencij cifrovoj jery: Materialy XXXIX Mezhdunarodnogo nauchnogo seminara prepodavatelej matematiki i informatiki universitetov i pedagogicheskih vuzov = Mathematis – Core Competencies of the Digital Age. Materials of XXXIX International Scientific Seminar of Teachers of Mathematics and Computer Science in Universities and Pedagogical Universities [Internet]; 2020 Oct 01–02; Moscow. Moscow: Moscow State Pedagogical University; 2020 [cited 2023 Feb 10]. 396 p. Available from: https:// www.mgpu.ru/wp-content/uploads/2020/09/Materialy-XXXIX-Mezhdunarodnogo-nauchnogo-seminara.pdf (In Russ.)
30. Andrianov I. V., Barantev R. G., Manevich L. I. Asimptoticheskaja matematika i sinergetika: put’ k celostnoj prostote = Asymptotic mathematics and synergetics: Way to the whole simple [Internet]. Moscow: Editorial URSS; 2004 [cited 2023 Feb 10]. 304 p. Available from: https://ega-math.narod.ru/Books/AnBaMan.htm (In Russ.)
31. Graps A. An introduction to wavelets. IEEE Computational Science and Engineering. 1995; 2 (2): 50–61. DOI: 10.1109/99.388960
32. Wojtaszczyk P. A mathematical introduction to wavelets. Cambridge University Press; 1997. 261 p. DOI: 10.1017/CBO9780511623790
33. Syropoulos A., Grammenos T. A modern introduction to fuzzy mathematics. USA: John Wiley & Sons; 2020. 384 p. DOI: 10.1002/9781119445326
34. Běhounek L., Cintula P. From fuzzy logic to fuzzy mathematics: A methodological manifesto. Fuzzy Sets and Systems [Internet]. 2006 [cited 2023 Feb 10]; 157 (5): 642–646. Available from: https:// www.behounek.online/logic/papers/hp.pdf
35. Savchuk M. M., Fesenko A. V. Quantum computing: Survey and analysis. Cybernetics and Systems Analysis [Internet]. 2019 [cited 2023 Feb 10]; 55: 10–21. Available from: Available from: https://link.springer.com/article/10.1007/s10559-019-00107-w
36. Gyongyosi L., Imre S. A. Survey on quantum computing technology. Computer Science Review. 2019; 31: 51–71. DOI: 10.1016/j.cosrev.2018.11.002
Review
For citations:
Testov V.A., Perminov E.A. Transdisciplinary role of physical and mathematical disciplines in modern natural science and engineering education. The Education and science journal. 2023;25(7):14-43. (In Russ.) https://doi.org/10.17853/1994-5639-2023-7-14-43