Preview

Образование и наука

Расширенный поиск

Использование электронного скаффолдинга для развития научного мышления студентов через обучение на основе запросов

https://doi.org/10.17853/1994-5639-2024-3082

Аннотация

Введение. Благодаря обучению на основе запросов (IBL) скаффолдинг используется, чтобы помочь студентам развивать их научное мышление. Тем не менее результаты, полученные студентами, варьируются в зависимости от их предыдущих знаний, потому что стратегии скаффолдинга различаются исходя из запроса. Поэтому всем учащимся должны быть предоставлены различные уровни скаффолдинга на основе их предыдущих знаний, чтобы облегчить усвоение новой информации в классе.

Цель исследования – изучить научное мышление студентов на основе курса, который включает два уровня электронного скаффолдинга в обучении на основе запросов.

Методология и методы исследования. Авторы провели поисковое исследование, используя смешанные методы, а также полуструктурированные интервью и упражнения «размышляй вслух» в двух классах (экспериментальном и контрольном) среди 64 учеников 11 класса, изучающих физику в государственной средней школе в Индонезии, в течение восьми недель. Авторы собрали количественные данные, определив предварительные знания учеников и их научное мышление, и получили качественные данные из интервью и упражнений «размышляй вслух», фотографий, видео активности и заметок учителей. Провели анализ ANOVA количественных данных и тематический анализ качественных данных.

Результаты и научная новизна. Это исследование является первой попыткой предоставления скаффолдинга с многоуровневыми вариантами, и функции, которая ранее ограничивалась единственным уровнем. Было обнаружено, что существуют значительные различия в саморегуляции студентов в зависимости от предварительных знаний студентов по предмету. Электронный скаффолдинг развивается сильнее в саморегуляции для студентов с низким уровнем предварительных знаний. Обнаружено, что привычка вести заметки и менять роли во время экспериментов помогла улучшить саморегуляцию студентов. Было отмечено, что студенты с низким уровнем предварительных знаний нуждались во вспомогательных элементах скаффолдинга для овладения понятиями физики, в то время как студенты с высоким уровнем знаний использовали вспомогательные элементы скаффолдинга только для ответа на выполнение задачи.

На основе результатов исследования сделан вывод, что многоуровневый электронный скаффолдинг открывает новую возможность для использования учителями физики в целях улучшения научного мышления учащихся. Кроме того, разработчики образовательных технологий могут принять во внимание дизайн многоуровневого электронного скаффолдинга для обеспечения адаптивной системы.

Об авторах

С. Коэс Хандаянто
Государственный университет Маланга
Индонезия

Коэс Хандаянто Суприоно – старший преподаватель кафедры физики факультета математики и естественных наук,

Маланг.



С. Фаваиз
Государственный университет Маланга
Индонезия

Фаваиз Сахал – аспирант кафедры физики факультета математики и естественных наук,

Маланг.



А. Тауфик
Государственный университет Маланга
Индонезия

Тауфик Ахмад – профессор, заведующий кафедрой физики факультета математики и естественных наук,

Маланг.



Список литературы

1. Eva B., Hartmann S. Reasoning in physics. Synthese. 2021; 198 (16): 3665–3669.

2. Bao L., Koenig K. Physics education research for 21st century learning. Disciplinary and Interdisciplinary Science Education Research. 2019; 1 (1): 2.

3. Heijltjes A., van Gog T., Leppink J., Paas F. Unraveling the effects of critical thinking instructions, practice, and self-explanation on students’ reasoning performance. Instructional Science. 2015; 43 (4): 487–506.

4. Alshamali M. Scientific reasoning and its relationship with problem solving: The case of upper primary science teachers. International Journal of Science and Mathematics Education. 2016; 14 (6): 1003–1019.

5. Hong J. C., Hwang M. Y., Liao S., Lin C. S., Pan Y. C., Chen Y. L. Scientific reasoning correlated to altruistic traits in an inquiry learning platform: Autistic vs. realistic reasoning in science problem-solving practice. Thinking Skills and Creativity. 2014; 12: 26–36.

6. Khan S., Krell M. Scientific reasoning competencies: A case of preservice teacher education. Canadian Journal of Science, Mathematics and Technology Education. 2019; 19 (4): 446–464.

7. Lawson A. E. The development and validation of a classroom test of formal reasoning. Journal of Research in Science Teaching. 1978; 15 (1): 11–24.

8. Novianawati N., Nahadi N. An investigation of reasoning ability at the secondary level students. In: Journal of Physics: Conference Series. Bandung: IOP Publishing; 2019. p. 022061. DOI: 10.1088/1742-6596/1157/2/022061

9. Rosdiana R., Siahaan P., Rahman T. Mapping the reasoning skill of the students on pressure concept. In: Journal of Physics: Conference Series. Bandung: IOP Publishing; 2019. p. 022036. DOI: 10.1088/1742-6596/1157/2/022036

10. Effendy S., Hartono Y., Ian M. The ability of scientific reasoning and mastery of physics concept of state senior high school students in Palembang City [Internet]. Atlantis Press; 2018 [cited 2021 Jun 19]. p. 504–509. Available from: https://www.atlantis-press.com/proceedings/iset-18/55910687

11. Fawaiz S., Handayanto S. K., Wahyudi H. S. Eksplorasi Keterampilan Penalaran Ilmiah Berdasarkan Jenis Kelamin Siswa SMA. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan. 2020; 5 (7): 934–943. (In Indonesian)

12. Khoirina M., Cari C., Sukarmin. Identify students’ scientific reasoning ability at senior high school. In: Journal of Physics: Conference Series. Yogyakarta: Institute of Physics; 2018. p. 012024. DOI: 10.1088/1742-6596/1097/1/012024

13. Woolley J. S., Deal A. M., Green J., Hathenbruck F., Kurtz S. A., Park T. K. H., et al. Undergraduate students demonstrate common false scientific reasoning strategies. Thinking Skills and Creativity. 2018; 27: 101–113.

14. Ding L., Wei X., Mollohan K. Does higher education improve student scientific reasoning skills? International Journal of Science and Mathematics Education. 2016; 14 (4): 619–634.

15. Andersen C., Garcia-Mila M. Scientific reasoning during inquiry. In: Taber K. S., Akpan B. (Eds.). Science education: An international course companion. Rotterdam: SensePublishers; 2017. p. 105–117. DOI: 10.1007/978-94-6300-749-8_8

16. Özdeniz Y., Aktamış H., Bildiren A. The effect of differentiated science module application on the scientific reasoning and scientific process skills of gifted students in a blended learning environment. International Journal of Science Education. 2023; 45 (4): 1–23.

17. Vaesen K., Houkes W. A new framework for teaching scientific reasoning to students from application-oriented sciences. European Journal for Philosophy of Science. 2021; 11 (2): 56.

18. Marušić M. Assessing pharmacy students’ scientific reasoning after completing a physics course taught using active-learning methods. American Journal of Pharmaceutical Education. 2020; 84 (8): 1112–1122.

19. Al-Balushi S. The effectiveness of interacting with scientific animations in chemistry using mobile devices on grade 12 students’ spatial ability and scientific reasoning skills. Journal of Science Education and Technology. 2017; 26 (1): 70–81.

20. Göhner M., Krell M. Preservice science teachers’ strategies in scientific reasoning: the case of modeling. Research in Science Education. 2022; 52 (2): 395–414.

21. Taub M., Sawyer R., Lester J., Azevedo R. The impact of contextualized emotions on self-regulated learning and scientific reasoning during learning with a game-based learning environment. International Journal of Artificial Intelligence in Education. 2020; 30 (1): 97–120.

22. Novo M., Salvadó Z. Fostering kindergarteners’ scientific reasoning in vulnerable settings through dialogic inquiry-based learning. In: Postiglione E. (Ed.). Fostering inclusion in education: Alternative approaches to progressive educational practices. Cham: Springer International Publishing; 2022. p. 229–243. DOI: 10.1007/978-3-031-07492-9_11

23. Kant J. M., Scheiter K., Oschatz K. How to sequence video modeling examples and inquiry tasks to foster scientific reasoning. Learning and Instruction. 2017; 52: 46–58.

24. Erlina N. The effectiveness of evidence-based reasoning in inquiry-based physics teaching to increase students’ scientific reasoning. Journal of Baltic Science Education. 2018; 17 (6): 972–985.

25. Schlatter E., Molenaar I., Lazonder A. W. Individual differences in children’s development of scientific reasoning through inquiry-based instruction: Who needs additional guidance? Frontiers in Psychology [Internet]. 2020 [cited 2021 Jan 13]; 11. Available from: https://www.frontiersin.org/articles/10.3389/fpsyg.2020.00904/full?report=reader

26. Orosz G., Németh V., Kovács L., Somogyi Z., Korom E. Guided inquiry-based learning in secondary-school chemistry classes: A case study. Chemistry Education Research and Practice. 2023; 24 (1): 50–70.

27. Krell M., Khan S., Vergara C., Cofré H., Mathesius S., Krüger D. Pre-service science teachers’ scientific reasoning competencies: Analysing the impact of contributing factors. Research in Science Education. 2023; 53 (1): 59–79.

28. Nenciovici L. Brain activations associated with scientific reasoning: A literature review. Cognitive Processing. 2019; 20 (2): 139–161.

29. Klahr, Dunbar. Dual space search during scientific reasoning. Cognitive Science. 1988; 12 (1): 1–48.

30. Omarchevska Y., Lachner A., Richter J., Scheiter K. It takes two to tango: How scientific reasoning and self-regulation processes impact argumentation quality. Journal of the Learning Sciences. 2022; 31 (2): 237–377.

31. Yanto B. E., Subali B., Suyanto S. Improving students’ scientific reasoning skills through the three levels of inquiry. International Journal of Instruction. 2019; 12 (4): 689–704.

32. Osborne J., Rafanelli S., Kind P. Toward a more coherent model for science education than the crosscutting concepts of the next generation science standards: The affordances of styles of reasoning. Journal of Research in Science Teaching. 2018; 55 (7): 962–981.

33. Chinn C. A., Duncan R. G. What is the value of general knowledge of scientific reasoning? In: Fischer F., Chinn C. A., Engelmann K., Osborne J. (Eds.). Scientific reasoning and argumentation. Routledge; 2018. p. 77–101. DOI: 10.4324/9780203731826-5

34. Legare C. The contributions of explanation and exploration to children’s scientific reasoning. Child Development Perspectives. 2014; 8 (2): 101–106.

35. Li C., Yang L. How scientific concept develops: Languaging in collaborative writing tasks. System. 2022; 105: 102744.

36. van der Graaf J. Inquiry-based learning and conceptual change in balance beam understanding. Frontiers in Psychology [Internet]. 2020 [cited 2023 Mar 26]; 11. Available from: https://www.frontiersin.org/articles/10.3389/fpsyg.2020.01621

37. Lazonder A. W., Hagemans M. G., de Jong T. Offering and discovering domain information in simulation-based inquiry learning. Learning and Instruction. 2010; 20 (6): 511–520.

38. Mulder Y. G., Lazonder A. W., de Jong T. Finding out how they find it out: An empirical analysis of inquiry learners’ need for support. International Journal of Science Education. 2010; 32 (15): 2033–2053.

39. Kaiser I., Mayer J. The long-term benefit of video modeling examples for guided inquiry. Frontiers in Education [Internet]. 2019 [cited 2023 Mar 26]; 4. Available from: https://www.frontiersin.org/articles/10.3389/feduc.2019.00104

40. Bruckermann T., Greving H., Schumann A., Stillfried M., Börner K., Kimmig S. E., et al. Scientific reasoning skills predict topic-specific knowledge after participation in a citizen science project on urban wildlife ecology. Journal of Research in Science Teaching [Internet]. 2023 [cited 2023 Mar 22]; 60: 1915–1941. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/tea.21835

41. Sun Y., Yan Z., Wu B. How differently designed guidance influences simulation-based inquiry learning in science education: A systematic review. Journal of Computer Assisted Learning. 2022; 38 (4): 960–976.

42. Lazonder A. W., Harmsen R. Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research. 2016; 86 (3): 681–718.

43. Koes-H. S., Hanum M. R. Nurturing higher order thinking ability through visual scaffolding in group investigation. In: Journal of Physics: Conference Series. IOP Publishing; 2019. p. 012069. DOI: 10.1088/1742-6596/1185/1/012069

44. Saman M. I., Koes-H. S., Sunaryono S. Procedural e-scaffolding in improving students physics problem solving skills. Unnes Science Education Journal [Internet]. 2018 [cited 2023 Feb 23]; 7 (2). Available from: https://journal.unnes.ac.id/sju/index.php/usej/article/view/23290

45. Belland B. R., Walker A. E., Kim N. J., Lefler M. Synthesizing results from empirical research on computer-based scaffolding in STEM education: A meta-analysis. Review of Educational Research. 2017; 87 (2): 309–344.

46. Moon J. A., Brockway D. Facilitating learning in an interactive science simulation: The Effects of task segmentation guidance on adults’ inquiry-based learning and cognitive load. Journal of Research on Technology in Education. 2019; 51 (1): 77–100.

47. Großmann N., Wilde M. Experimentation in biology lessons: Guided discovery through incremental scaffolds. International Journal of Science Education. 2019; 41 (6): 759–781.

48. Blumer L. Laboratory courses with guided-inquiry modules improve scientific reasoning and experimental design skills for the least-prepared undergraduate students. CBE Life Sciences Education [Internet]. 2019 [cited 2023 Feb 23]; 18 (1). Available from: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85060546621&origin=inward

49. Creswell J. W., Clark V. L. P. Designing and conducting mixed methods research. 3rd edition. Los Angeles: SAGE Publications; 2018. 520 p.

50. Bond T. G., Fox C. M. Applying the Rasch model: Fundamental measurement in the human sciences. 3rd edition. New York ; London: Routledge, Taylor and Francis Group; 2015. 383 p.

51. Braun V., Clarke V., Hayfield N., Terry G. Thematic analysis. In: Liamputtong P. (Ed.). Handbook of research methods in health social sciences [Internet]. Singapore: Springer Singapore; 2019 [cited 2021 Sep 29]. p. 843–60. Available from: http://link.springer.com/10.1007/978-981-10-5251-4_103

52. Reinhold F., Hoch S., Werner B., Richter-Gebert J., Reiss K. Learning fractions with and without educational technology: What matters for high-achieving and low-achieving students? Learning and Instruction. 2020; 65: 101264.

53. van Riesen S., Gijlers H., Anjewierden A., de Jong T. Supporting learners’ experiment design. Educational Technology Research and Development. 2018; 66 (2): 475–491.

54. Roll I., Butler D., Yee N., Welsh A., Perez S., Briseno A., et al. Understanding the impact of guiding inquiry: The relationship between directive support, student attributes, and transfer of knowledge, attitudes, and behaviours in inquiry learning. Instructional Science. 2018; 46 (1): 77–104.

55. van Riesen S. A. N., Gijlers H., Anjewierden A., de Jong T. The influence of prior knowledge on experiment design guidance in a science inquiry context. International Journal of Science Education. 2018; 40 (11): 1327–1344.

56. van Riesen S. A. N., Gijlers H., Anjewierden A. A., de Jong T. The influence of prior knowledge on the effectiveness of guided experiment design. Interactive Learning Environments. 2019; 30 (1): 1–17.

57. Utomo D. P., Santoso T. Zone of proximal development and scaffolding required by junior high school students in solving mathematical problems. Obrazovanie i nauka = The Education and Science Journal. 2021; 23 (9): 186–202.

58. Gijlers H., de Jong T. The relation between prior knowledge and students’ collaborative discovery learning processes. Journal of Research in Science Teaching. 2005; 42 (3): 264–282.

59. Taber K. S. Mediated learning leading development – the social development theory of Lev Vygotsky. In: Akpan B., Kennedy T. J. (Eds.). Science education in theory and practice: An introductory guide to learning theory. Cham: Springer International Publishing; 2020. p. 277–291. DOI: 10.1007/978-3-030-43620-9_19

60. Bulu S. T., Pedersen S. Supporting problem-solving performance in a hypermedia learning environment: The role of students’ prior knowledge and metacognitive skills. Computers in Human Behavior. 2012; 28 (4): 1162–1169.

61. Mende S., Proske A., Körndle H., Narciss S. Who benefits from a low versus high guidance CSCL script and why? Instructional Science. 2017; 45 (4): 439–468.

62. Chou C. Y., Lai K. R., Chao P. Y., Tseng S. F., Liao T. Y. A negotiation-based adaptive learning system for regulating help-seeking behaviors. Computers & Education. 2018; 126: 115–128.

63. Zhang M., Quintana C. Scaffolding strategies for supporting middle school students’ online inquiry processes. Computers & Education. 2012; 58 (1): 181–196.

64. Garcia-Mila M., Andersen C. Developmental change in notetaking during scientific inquiry. International Journal of Science Education. 2007; 29 (8): 1035–1058.

65. Bain J. D., Ballantyne R., Packer J., Mills C. Using journal writing to enhance student teachers’ reflectivity during field experience placements. Teachers and Teaching. 1999; 5 (1): 51–73.

66. Dewey J. How we think. Lexington, MA, US: D.C. Heath; 1910. 228 p.

67. Boud D., Keogh R., Walker D. Reflection: Turning experience into learning. London: Routledge; 1985. 172 p.

68. Epp C. D., Akcayir G., Phirangee K. Think twice: Exploring the effect of reflective practices with peer review on reflective writing and writing quality in computer-science education. Reflective Practice. 2019; 20 (4): 533–547.

69. Runnel M. I., Pedaste M., Leijen Ä., Leijen Ä. Model for guiding reflection in the context of inquiry-based science education. Journal of Baltic Science Education. 2013; 12 (1): 107–118.

70. Trevors G., Duffy M., Azevedo R. Note-taking within MetaTutor: Interactions between an intelligent tutoring system and prior knowledge on note-taking and learning. Educational Technology Research and Development. 2014; 62 (5): 507–528.

71. Trafton J. G., Trickett S. B. Note-taking for self-explanation and problem solving. Human-Computer Interaction. 2001; 16 (1): 1–38.

72. Cho Y. H., Jonassen D. H. Learning by self-explaining causal diagrams in high-school biology. Asia Pacific Education Review. 2012; 13 (1): 171–184.

73. Garcia-Mila M., Andersen C., Rojo N. E. Elementary students’ laboratory record keeping during scientific inquiry. International Journal of Science Education. 2011; 33 (7): 915–942.

74. Kuhn D., Phelps E. The development of problem-solving strategies. In: Reese H. W. (Ed.). Advances in child development and behavior [Internet]. JAI; 1982 [cited 2023 Feb 23]. p. 1–44. Available from: https://www.sciencedirect.com/science/article/pii/S0065240708603560

75. Nawani J., von Kotzebue L., Spangler M., Neuhaus B. J. Engaging students in constructing scientific explanations in biology classrooms: A lesson-design model. Journal of Biological Education. 2019; 53 (4): 378–389.

76. Buning J., Fokkema D., Kuik G. Dreef T. Open inquiry experiments in physics laboratory courses. In: Sokołowska D., Michelini M. (Eds.). The role of laboratory work in improving physics teaching and learning. Cham: Springer International Publishing; 2018. p. 95–105. DOI: 10.1007/978-3-319-96184-2_8

77. Aidoo B., Anthony-Krueger C., Gyampoh A. O. G., Tsyawo J., Quansah F. A mixed-method approach to investigate the effect of flipped inquiry-based learning on chemistry students learning. European Journal of Science and Mathematics Education. 2022; 10 (4): 507–518.

78. Veale C. G. L. Prioritizing the development of experimental skills and scientific reasoning: A model for authentic evaluation of laboratory performance in large organic chemistry classes. Journal of Chemical Education. 2020; 97 (3): 675–680.

79. Abate T. Assessment of scientific reasoning: Development and validation of scientific reasoning assessment tool. Eurasia Journal of Mathematics, Science and Technology Education. 2020; 16 (12): 1–15.

80. Schepman A., Rodway P., Beattie C., Lambert J. An observational study of undergraduate students’ adoption of (mobile) note-taking software. Computers in Human Behavior. 2012; 28 (2): 308–317.


Рецензия

Для цитирования:


Коэс Хандаянто С., Фаваиз С., Тауфик А. Использование электронного скаффолдинга для развития научного мышления студентов через обучение на основе запросов. Образование и наука. 2024;26(3):69-90. https://doi.org/10.17853/1994-5639-2024-3082

For citation:


Koes Handayanto S., Fawaiz S., Taufiq A. Using e-scaffolding to develop students’ scientific reasoning through inquiry-based learning. The Education and science journal. 2024;26(3):69-90. https://doi.org/10.17853/1994-5639-2024-3082

Просмотров: 340


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1994-5639 (Print)
ISSN 2310-5828 (Online)