SOME TYPES OF METASUBJECT RESULTS WHEN TEACHING MATHEMATICS
https://doi.org/10.17853/1994-5639-2016-1-4-20
Abstract
The aim of the study is to allocate in the content of teaching mathematics those elements, those kinds of mathematical cognitive activities that are metasubject character, which are the basis for the formation of cognitive learning activities, as a means to study not only of mathematical objects, but some objects of other sciences.
Methods. Research is based on a system-structural and activity-based approaches; literature analysis, theoretical research and experimental work.
Results. Among of metasubject results of studying mathematics, the following types of mathematical schemes of thinking are identified: logical, algorithmic, combinatory, figurative-geometrical, stochastic. The characteristic is given; the specifics of each type of mathematical structures of thinking are described. The main means of the formation of such schemes is the decision of the respective types of non-standard tasks.
Scientific novelty. The author gives a theoretical justification of the role of mathematical thinking schemes as metasubject results of training and points out funds for their formation in educational activity.
Practical significance. The perspective directions of accents change in the content of training of mathematics directed on increase in training of a role of mathematical schemes of thinking as bases of formation of universal informative cognitive actions are emphasized.
About the Author
V. A. TestovRussian Federation
Doctor of Pedagogical Sciences, Professor, Department of Mathematics and Mathematics Teaching Methods,
Vologda
References
1. Atahanov R. A. K diagnostike razvitija matematicheskogo myshlenija. To diagnostics of development of mathematical thinking]. Voprosy psihologii. Psychology Questions]. 1992. № 1–2. P. 60–67. (In Russian)
2. Bozhenkova L. I. Metodika formirovanija universal’nyh uchebnyh dejstvij (UUD) pri obuchenii geometrii. [Methodology of formation of the universal educational actions when training geometry]. Moscow: Publishing House BINOM; Laboratorija znanij. [Laboratory of Knowledge]. 2013. 205 p. (In Russian)
3. Gardner Martin. Est’ ideja! [There is an idea!]. Moscow: Publishing House Mir. [World]. 1982. (In Russian)
4. Davydov V. V. Teorija razvivajushhego obuchenija. [The theory of the developing training]. Moscow, 1996. (In Russian)
5. Zajkin M. I. Treningovaja sluzhba v sisteme matematicheskogo obrazovanija shkol’nikov. [Training service in system of mathematical education of school students]. Matematicheskoe obrazovanie: tradicii i sovremennost’: tezisy federal’-noj nauchno-prakticheskoj konferencii. [Mathematical Education: Traditions and Present. Theses of Federal Scientific and Practical Conference]. Nizhny Novgorod, 1997. P. 38–40. (In Russian)
6. Lazarev V. S. O formirovanii poznavatel’nyh dejstvij v uchebnoj dejatel’nosti. [Training service in system of mathematical education of school students]. Mathematical education: traditions and present. Theses of Federal Scientific and Practical Conference. Pedagogika. [Pedagogy]. 2014. № 6. P. 3–12. (In Russian)
7. Lazarev V. S. FGOS obshhego obrazovanija: blesk deklaracij i perspektivy realizacii. [Federal State Educational Standard of the general education: gloss of declarations and prospect of realization]. Pedagogika. [Pedagogy]. 2015. № 4. P. 10–19. (In Russian)
8. Lerner I. Ja. Kachestva znanij uchashhihsja. [Qualities of knowledge of pupils]. Kakimi oni dolzhny byt’? [What they have to be?]. Moscow, 1979. (In Russian)
9. Markushevich A. I. Ob ocherednyh zadachah prepodavanija matematiki v shkole. [About immediate tasks of teaching mathematics at school]. Matematika v shkole. [Mathematics at School]. № 2. 1962. P. 3–14. (In Russian)
10. Najsser U. Poznanie i real’nost’. [Cognition and reality]. Moscow: Publishing House Progress, 1981. 230 p. (In Russian)
11. Podhodova N. S., Zlobina D. A. Osnovy razvitija umenija rabotat’ s abstraktnym materialom kak odnoj iz metafunkcij matematiki. [Bases of development of ability to work with abstract material as one of metafunctions of mathematics]. Obrazovanie, nauka i jekonomika v vuzah. [Education, science and economy in higher education institutions]. ntegracija v mezhdunarodnoe obrazovatel’noe prostranstvo: sbornik nauchnyh rabot, predstavlennyh na Mezhdunarodnuju nauchno-prakticheskuju konferenciju. Integration into the International Educational Space. The Collection of the Scientific Works Presented on the International Scientific and Practical Conference]. Plock: Szkola Wyzsza im. Pawla Wlodkowica w Plocku, 2010. (In Russian)
12. Podhodova N. S., Fefilova E. F. Formirovanie poznavatel’nyh universal’- nyh uchebnyh dejstvii pri obuchenii matematike. [Formation informative universal educational action when training in mathematics]. Tendencii i perspektivy razvitija matematicheskogo obrazovanija: materialy XXXIII Mezhdunarodnogo nauchnogo seminara prepodavatelej matematiki i informatiki universitetov i pedvuzov. [Tendencies and Prospects of Development of Mathematical Education. Materials XXXIII of the International Scientific Seminar of Teachers of Mathematics and Informatics of Universities and Teacher Training Universities]. Kirov: Vjatskij gosudarstvennyj gumanitarnyj universitet. [Vyatka State Humanities University]. 2014. P. 238–240. (In Russian)
13. Podhodova N. S., Kokokar’ O. A., Fefilova E. F. Realizacija FGOS OO: novye reshenija v obuchenii matematike. [Realization of Federal State Educational Standard of the general education: new decisions in training in mathematics]. Saint-Petersburg; Arkhangelsk: Publishing House KARA, 2014. 255 p. (In Russian)
14. Ponomarev Ja. A. Razvitie vnutrennego plana dejstvij v processe obuchenija. [Development of the internal plan of action in the course of training]. Vozrastnye vozmozhnosti usvoenija znanij (mladshie klassy shkoly). [Age opportunities of assimilation of knowledge (elementary grades of school)]. Ed. by D. B. Jelkonin, V. V. Davydov. Moscow: Publishing House Prosveshhenie. [Enlightenment]. 1966. P. 395–441. (In Russian)
15. Slepkan’ Z. I. Metodicheskaja sistema realizacii razvivajushhej funkcii obuchenija matematike v srednej shkole. [Methodological system of realization of the developing function of training in mathematics at high school]. Doct. diss. Moscow, 1987. 47 p. (In Russian)
16. Stoljar A. A. Pedagogika matematiki. [Pedagogy of mathematics]. Minsk: Publishing House Vyshjejshaja Shkola. [Higher School]. 1969. (In Russian)
Review
For citations:
Testov V.A. SOME TYPES OF METASUBJECT RESULTS WHEN TEACHING MATHEMATICS. The Education and science journal. 2016;(1):4-20. (In Russ.) https://doi.org/10.17853/1994-5639-2016-1-4-20