Preview

Образование и наука

Расширенный поиск

Факторы формирования STEM-компетенций в условиях профессионального образования: аналитический обзор зарубежных исследований

https://doi.org/10.17853/1994-5639-2024-9-42-73

Аннотация

Введение. Формирование STEM-компетенций по всему миру является одним из приоритетных направлений современных научных исследований. При этом факторы формирования STEM-компетенций остаются недостаточно изученными и отражены в результатах научных работ фрагментарно, что делает настоящее исследование актуальным и своевременным. Цель статьи состоит в систематизации научных представлений о STEM-компетенциях и условиях их формирования как предпосылки осознания перспектив развития STEM на ступени профессионального образования. Методология, методы и методики. Исследование является обзорно-аналитическим и направлено на отражение теоретического и прикладного аспектов STEM образования. В работе систематизируются научные взгляды на определение и модели формирования STEM-компетенций, анализируются научные статьи, относящиеся к периоду 2005–2024 годов, позволяющие выстроить систему факторов формирования STEM-компетенций в условиях профессионального образования в зарубежных странах. Результаты и научная новизна. Систематизированы факторы и представления об условиях формирования STEM-компетенций в процессе профессиональной подготовки кадров для инновационной экономики. Описана система факторов формирования STEM-компетенций. Выявлены барьеры, оказывающие тормозящее влияние на развитие данного направления. Практическая значимость. Результаты исследования могут быть использованы при разработке образовательных программ подготовки специалистов по направлениям критических и сквозных технологий в системе профессионального образования.

Об авторах

И. Н. Попова
Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации
Россия

Попова Ирина Николаевна кандидат педагогических наук, доцент, ведущий научный сотрудник Научно-образовательного центра развития образования Высшей школы государственного управления,

Москва.

Scopus AuthorID: 57250283400;

ResearcherID: R-2109-2018. 



А. И. Сатдыков
Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации
Россия

Сатдыков Айрат Илдарович – заместитель руководителя Научно-образовательного центра развития образования Высшей школы государственного управления

Москва.



Список литературы

1. Sanders M. STEM, STEM education, STEMmania. The Technology Teacher. 2009;68:20–26. Accessed July 01, 2024. https://www.researchgate.net/publication/237748408_STEM_STEM_education_STEMmania

2. Buchholz K. Where Students Choose STEM Degrees. Accessed July 01, 2024. https://www.statista.com/chart/22927/share-and-total-number-of-stem-graduates-by-country/

3. The Future of Jobs Report 2023. 296 p. Accessed July 01, 2024. https://www.weforum.org/publications/the-future-of-jobs-report-2023/

4. Broggy J., O’Reilly J., Erduran S. Interdisciplinarity and science education. In: Taber K.S., Akpan B., eds. Science Education. New Directions in Mathematics and Science Education. Rotterdam: SensePublishers; 2017:81–90. doi: 10.1007/978-94-6300-749-8_6

5. Каримова Б.Т. STEM-обучение – инновационный подход в современном образовании. Innovation Management and Technology in the Era of Globalization: Materials of the International Conference; 2018. Alexandria – Sharm El Sheikh, Egypt; 2018:107–110.

6. Boon N.S. Exploring STEM competences for the 21st-century. UNESCO International Bureau of Education. 2019;30:1–53. Accessed July 02, 2024. https://repositorio.minedu.gob.pe/handle/20.500.12799/6641

7. Le Q., Le H., Vu C., Nguyen N., Nguyen A., Vu N. Integrated science, technology, engineering and mathematics (STEM) education through active experience of designing technical toys in Vietnamese schools. Journal of Education, Society and Behavioural Science. 2015;11(2):1–12. doi: 10.9734/BJESBS/2015/19429

8. Zhan Z., Shen W., Xu Z., Niu S., You G. A bibliometric analysis of the global landscape on STEM education (2004–2021): towards global distribution, subject integration, and research trends. Asia Pacific Journal of Innovation and Entrepreneurship. 2022;16(2):171–203. doi: 10.1108/APJIE-08-2022-0090

9. Сологуб Н.С., Аршанский Е.Я. STEM-образование: сущность и анализ идеи в исторической ретроспективе. Весці БДПУ. Серыя 1. 2020;2:15–18. Режим доступа: https://elib.bspu.by/bitstream/doc/50479/1/vesti_2_%D0%A1%D0%B5%D1%80%201%20220620_0015-0018.pdf (дата обращения: 01.07.2024).

10. Campbell C., Speldewinde C. Early childhood STEM education for sustainable development. Sustainability. 2022;14(6). doi: 10.3390/su14063524

11. Успаева М.Г., Гачаев А.М. STEM-образование: научный дискурс и образовательные практики. Управление образованием: теория и практика. 2022;12(9). doi: 10.25726/q3562-6842-6568-b

12. Zhan Z., Niu S. Subject integration and theme evolution of STEM education in K-12 and higher education research. Humanities and Social Sciences Communications. 2023;10(1). doi: 10.1057/s41599023-02303-8

13. Morrison J. Attributes of STEM education: the student, the school, the classroom. TIES Teaching Institute for Excellence in STEM. 2006:2–7. Accessed June 01, 2024. http://www.leadingpbl.org/f/Jans%20pdf%20Attributes_of_STEM_Education-1.pdf

14. Honey M., Pearson G., Schweingruber H. STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research. Washington, DC: National Academies Press; 2014. 180 p. Accessed June 01, 2024. https://www.middleweb.com/wp-content/uploads/2015/01/STEM-Integration-in-K12-Education.pdf

15. Martin-Paez T., Aguilera D., Perales-Palacios F.J., Vílchez-González J.M. What are we talking about when we talk about STEM education? A review of literature. Science Education. 2019;103(4):799– 822. doi: 10.1002/sce.2152

16. Zizka L., McGunagle D.M., Clark P.J. Sustainability in science, technology, engineering and mathematics (STEM) programs: authentic engagement through a community-based approach. Journal of Cleaner Production. 2020;279(3). doi: 10.1016/j.jclepro.2020.123715

17. Khan K., Mason J. The M in STEM and issues of data literacy. In: Proceedings of the 29th International Conference on Computers in Education: Asia-Pacific Society for Computers in Education. 2021:632–637. Accessed June 10, 2024. https://icce2021.apsce.net/wp-content/uploads/2021/12/ICCE2021-Vol.IPP.-632-637.pdf

18. Rozek C.S., Hyde J.S., Svoboda R.C., Hullema C.S., Harackiewicz J.M. Gender differences in the effects of a utility-value intervention to help parents motivate adolescents in mathematics and science. Journal of Educational Psychology. 2015;107:195–206. doi: 10.1037/a0036981

19. Lee M., Hsu C., Chang C. Identifying Taiwanese teachers’ perceived self-efficacy for science, technology, engineering, and mathematics (STEM) knowledge. Asia-Pacific Education Researcher. 2019;28(1). doi: 10.1007/s40299-018-0401-6

20. Wang H., Moore T.J., Roehrig G.H., Park M.S. STEM integration: teacher perceptions and practice. Journal of Pre-College Engineering Education Research (J-PEER). 2011;1(2). doi: 10.5703/1288284314636

21. Moore K.A., Smith T.J. Advancing the state of the art of STEM integration. Journal of STEM Education. 2014;15(1):5–10. Accessed June 08, 2024. https://www.researchgate.net/publication/294427783_Advancing_the_State_of_the_Art_of_STEM_Integration

22. Lamb R., Akmal T., Petrie K. Development of a cognition-priming model describing learning in a STEM classroom. Journal of Research in Science Teaching. 2015;52(3):410–437. doi: 10.1002/tea.21200

23. Kelley T.R., Knowles J.G. A conceptual framework for integrated STEM education. International Journal of STEM Education. 2016;3(11). doi: 10.1186/s40594-016-0046-z

24. Estapa A.T., Tank K.M. Supporting integrated STEM in the elementary classroom: a professional development approach centered on an engineering design challenge. International Journal of STEM Education. 2017;4(6). doi: 10.1186/s40594-017-0058-3

25. Mohd Shahali E.H., Halim L., Rasul M.S., Osman K., Zulkifeli M.A. STEM learning through engineering design: impact on middle secondary students’ interest towards STEM. Eurasia Journal of Mathematics, Science and Technology Education. 2017;13(5):1189–1211. doi: 10.12973/eurasia.2017.00667a

26. Song M. Integrated STEM teaching competencies and performances as perceived by secondary teachers in South Korea. International Journal of Comparative Education and Development. 2020;22(2):131–146. doi: 10.1108/IJCED-02-2019-0016

27. Ryu M., Mentzer N., Knobloch N. Preservice teachers’ experiences of STEM integration: challenges and implications for integrated STEM teacher preparation. International Journal of Technology and Design Education. 2019;29(3):493–512. doi: 10.1007/s10798-018-9440-9

28. Blackley S., Howell, J. The next chapter in the STEM education narrative: using robotics to support programming and coding. Australian Journal of Teacher Education. 2019;44(4):51–64. doi: 10.14221/ajte.2018v44n4.4

29. Meng C., Idris N., Leong K.E., Daud M. Secondary school assessment practices in science, technology and mathematics (STEM) related subjects. Journal of Mathematics Education. 2013;6(2):58–69. Accessed July 08, 2024. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2431552

30. Shaughnessy J.M. Mathematics in a STEM context. Mathematics Teaching in the Middle School. 2013;18(6):324–324. doi: 10.5951/mathteacmiddscho.18.6.0324

31. Moore T., Stohlmann M., Wang H., Tank K., Glancy A., Roehrig G. Implementation and integration of engineering in K-12 STEM education. In: Purzer S., Strobel J., Cardella M., eds. Engineering in Pre-College Settings: Synthesizing Research, Policy, and Practices. West Lafayette: Purdue University Press; 2014:35–60. Accessed July 12, 2024. https://www.researchgate.net/publication/273458545_Implementation_and_integration_of_engineering_in_K-12_STEM_education

32. Lesseig K., Slavit D., Nelson T.H. Jumping on the STEM bandwagon: how middle grades students and teachers can benefit from STEM experiences. Middle School Journal. 2017;48(3):15–24. doi: 10.1080/00940771.2017.1297663

33. Aydin-Gunbatar S., Tarkin-Celikkiran A., Kutucu E.S., Ekiz-Kiran B. The influence of a design-based elective stem course on pre-service chemistry teachers’ content knowledge, STEM conceptions, and engineering views. Chemistry Education Research and Practice. 2018;19(3):954–972. doi: 10.1039/C8RP00128F

34. Van Dam-Mieras R., Lansu A., Rieckmann M. et al. Development of an interdisciplinary, intercultural master’s programme on sustainability: learning from the richness of diversity. Innovative Higher Education. 2008;32(5):251–264. doi: 10.1007/s10755-007-9055-7

35. Gamage K.A.A., Ekanayake S.Y., Dehideniya S.C.P. Embedding sustainability in learning and teaching: lessons learned and moving forward – approaches in STEM higher education programmes. Education Sciences. 2022;12(3). doi: 10.3390/educsci12030225

36. González-Gómez D., Jeong, J.S. Approaches and methods of science teaching and sustainable development. Sustainability. 2022;14. doi: 10.3390/su14031546

37. Dehideniya D.M.S.C.P.K., Ekanayake S.Y. Approaching sustainability competency development through online STEM-based science teaching-learning. Global Comparative Education: Journal of the WCCES. 2023;7(2). Accessed July 12, 2024. https://www.researchgate.net/publication/356391304_Online_STEM_Based_Science_Teaching-Learning_Experience

38. Bybee R.W. Guest editorial: using the BSCS 5E instructional model to introduce STEM disciplines. Science and Children. 2019;56(6):8–12. doi: 10.2505/4/sc19_056_06_8

39. Hu W., Guo X. Toward the development of key competencies: a conceptual framework for the STEM curriculum design and a case study. Frontiers in Education. 2021;6. doi: 10.3389/feduc.2021.684265

40. Newell M.J., Ulrich P.N. Competent and employed: STEM alumni perspectives on undergraduate research and NACE career-readiness competencies. Journal of Teaching and Learning for Graduate Employability. 2022;13(1):79–93. doi: 10.21153/jtlge2022vol13no1art1534

41. Bybee R.W. The BSCS 5E Instructional Model and 21st Century Skills. Executive Summary. USA; 2006. 19 p. Accessed July 12, 2024. https://media.bscs.org/bscsmw/5es/bscs_5e_executive_summary.pdf

42. Jang H. Identifying 21st century STEM competencies using workplace data. Journal of Science Education and Technology. 2016;25:284–301. doi: 10.1007/s10956-015-9593-1

43. Akdere M., Hickman L., Kirchner M. Developing leadership competencies for STEM fields: the case of Purdue Polytechnic Leadership Academy. Developing Human Resources. 2019;21(1):49–71. doi: 10.1177/1523422318814546

44. Yann Sh.O., Neo M. Sharing STEM Competencies Practices in Asia Seminar Proceeding. Singapore: Multi-centric Education, Research and Industry STEM Centre; National Institute of Education; Nanyang Technological University; 2022. 125 p. Accessed July 12, 2024. https://www.researchgate.net/publication/364313302

45. Care E., Luo R. Assessment of Transversal Competencies: Policy and Practice in the Asia-Pacific Region. UNESCO; 2016. 63 p. Accessed July 12, 2024. https://www.researchgate.net/publication/313761634

46. Preparing & Supporting Teachers to Meet the Challenges of 21st Century Learning in Asia-Pacific. Transversal Competencies in Education Policies and Practice. UNESCO; 2016. 4 p. Accessed July 12, 2024. https://gcedclearinghouse.org/sites/default/files/resources/180312eng.pdf

47. Bianchi G., Pisiotis U., Giraldez M.C. GreenComp – The European Sustainability Competence Framework. Luxembourg: Publications Office of the European Union; 2022. 56 p. doi: 10.2760/13286

48. European Commission, Directorate-General for Education, Youth, Sport and Culture, Key Competences for Lifelong Learning. Luxembourg: Publications Office of the European Union; 2019. 20 p. Accessed July 10, 2024. https://makemothersmatter.org/wp-content/uploads/2019/11/KEY-COMPETENCES-FOR-LIFELONG-LEARNING-Mars-2019.pdf

49. Sala A., Punie Y., Garkov V., Carbera M. LifeComp The European Framework for Personal, Social and Learning to Learn Key Competence. JRC Science for Policy Report. Luxembourg: Publications Office of the European Union. European Commission; 2020. 84 p. doi: 10.2760/302967

50. Abina A., Temeljotov Salaj A., Cestnik B., Karaliˇc A., Ogrinc M., Kovaˇciˇc Lukman R., Zidanšek A. Challenging 21st-century competencies for STEM students: companies’ vision in Slovenia and Norway in the light of global initiatives for competencies development. Sustainability. 2024;16. doi: 10.3390/su16031295

51. Siekmann G., Korbel P. Defining “STEM” Skills: Review and Synthesis of the Literature. Adelaide: National Centre for Vocational Education Research (NCVER); 2016. 56 p. Accessed July 15, 2024. https://www.ncver.edu.au/__data/assets/pdf_file/0022/61339/Support-doc-1-Defining-STEMskills-review-and-synthesis-of-the-literature.pdf

52. McLoughlin E., Butler D., Kaya S., Costello E. STEM Education in Schools: What Can We Learn from the Research? Ireland: Dublin City University; 2020. 134 p. doi: 10.5281/zenodo.3673728

53. Accreditation Criteria & Supporting Documents (ABET). Accessed July 15, 2024. https://www.abet.org/accreditation/accreditation-criteria/

54. Lucas B., Hanson J., Claxton G. Thinking Like an Engineer: Implications for the Education System. UK: The Royal Academy of Engineering; 2014. 88 p. Accessed July 16, 2024. https://raeng.org.uk/media/brjjknt3/thinking-like-an-engineer-full-report.pdf

55. Wing J.M. Computational thinking. Communications of The ACM. 2006;49(3):33–35. doi: 10.1145/1118178.1118215

56. Crawley E.F., Malmqvist J., Östlund S., Brodeur D.R., Edström K. Rethinking Engineering Education. The CDIO Approach. 2nd ed. Switzerland: Springer International Publishing; 2014. 311 p. Accessed July 16, 2024. https://link.springer.com/book/10.1007/978-3-319-05561-9

57. Zhong B., Liu X., Xia L., Sun W. A proposed taxonomy of teaching models in STEM education: robotics as an example. Sage Open. 2022;12(2). doi: 10.1177/21582440221099525

58. Carracedo F.S., Soler A., Martin C., et al. Competency maps: an effective model to integrate professional competencies across a STEM curriculum. Journal of Science Education and Technology. 2018;27:448–468. Accessed July 16, 2024. https://rdcu.be/NbGx

59. Arıkan S., Pesen M., Erktin E. STEM yeterlikleri değerlendirme çerçevesinin 4. sınıf düzeyi için uyarlanması. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi (PAÜEFD). 2023;60:201–225. doi: 10.9779/pauefd.1249861

60. Gao X., Li P., Shen J., et al. Reviewing assessment of student learning in interdisciplinary STEM education. International Journal of STEM Education. 2020;7. doi: 10.1186/s40594-020-00225-4

61. Ardianto D., Firman H., Permanasari A., Ramalis T.R. What is science, technology, engineering, mathematics (STEM) literacy? Advances in Social Science, Education and Humanities Research. 2018:381–384. doi: 10.2991/aes-18.2019.86

62. Turner E.E., Roth McDuffie A., Bennett A.B., Aguirre J., Chen M.K., Foote M.Q., Smith J.E. Mathematical modeling in the elementary grades: developing and testing an assessment. International Journal of Science and Mathematics Education. 2022;20(7):1387–1409. doi: 10.1007/s10763-02110195-w

63. Arıkan S., Erktin E., Pesen M. Development and validation of a STEM competencies assessment framework. International Journal of Science and Mathematics Education. 2022;20:1–24. doi: 10.1007/s10763-020-10132-3

64. Coello Pisco S.M., Rodríguez B., Banguera L., Baidal E. Research skills R+D+I and industry 4.0, STEM and TRIZ and their application in the professional skills of applied physics students. Revista Mexicana de Física E. 2024;21(1). doi: 10.31349/RevMexFisE.21.010212

65. English L.D. Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education. 2017;15(1):5–24. doi: 10.1007/s10763-017-9802-x

66. Lai C.S. Using inquiry-based strategies for enhancing students’ STEM education learning. Journal of Education in Science Environment and Health. 2018;4(1):110–117. doi: 10.21891/jeseh.389740

67. Wang Yu., Wang W. How green industrial policy affects the constancy of green technology innovation: a fresh proof from the innovation motivation perspective. Environmental Research Communications. 2024;6(3). doi: 10.1088/2515-7620/ad35ac

68. Lariba E. Gender dynamics in STEM fields: women’s experiences in different cultural contexts. Journal of Advanced Sociology. 2024;5(2):15–29. doi: 10.47941/jas.1857

69. Taylor E. Investigating soft skills development at a higher education institution in South Africa. In: Conference: ICEEL 2019: 2019 3rd International Conference on Education and E-Learning. 2019:140– 146. doi: 10.1145/3371647.3371669

70. Fan S., Yu K. Core value and implementation of the science, technology, engineering, and mathematics curriculum in technology education. Journal of Research in Education Sciences. 2016;61(2):153– 183. doi: 10.6209/JORIES.2016.61(2).06

71. Cherner Y., Witus G., Uhomoibhi J., Cherner T., Van Dyke B., Popova I., Wang H. Interactive and Adaptable Mobile-Friendly e-Learning Environments for K-12 and Higher STEM Education and Skills Training. Advances in Intelligent Systems and Computing. Mobile Technologies and Applications for the Internet of Things. Cham: Springer Link; 2019:235–247. doi: 10.1007/978-3-030-11434-3_27

72. Hu Q., Li F., Chen C. A smart home test bed for undergraduate education to bridge the curriculum gap from traditional power systems to modernized Smart Grids. IEEE Transactions on Education. 2015;58(1):32–38. doi: 10.1109/TE.2014.2321529

73. Balyk N.R., Shmyger G.P., Vasylenko Ya.Ph., Oleksiuk V.P. STEM centre as a factor in the development of formal and non-formal STEM education. In: Journal of Physics: Conference Series. XIV International Conference on Mathematics, Science and Technology Education; May 18–20, 2022; Kryvyi Rih, Ukraine. doi: 10.1088/1742-6596/2288/1/012030

74. Kao G.Y.M., Ruan C.A. Designing and evaluating a high interactive augmented reality system for programming learning. Computers in Human Behavior. 2022;132(6). doi: 10.1016/j.chb.2022.107245

75. Altan E.B., Tan S. Concepts of creativity in design based learning in stem education. International Journal of Technology and Design Education. 2021;31:503–529. doi: 10.1007/s10798-020-09569-y

76. Zhan Z., Xiao Y., Li T. Effects of association interventions on students’ creative thinking, aptitude, empathy, and design scheme in a STEAM course: considering remote and close association. International Journal of Technology and Design Education. 2023;33(5):1773–1795. doi: 10.1007/s10798-02209801-x

77. Weintrop D., Beheshti E., Horn M., Orton K., Jona K., Trouille L., Wilensky U. Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology. 2016;25:127–147. doi: 10.1007/s10956-015-9581-5

78. Li T., Zhan Z. A systematic review on design thinking Integrated Learning in K-12 education. Applied Sciences. 2022;12(16). doi: 10.3390/app12168077

79. Gadot R., Tsybulsky D. Digital curation as a pedagogical approach to promote critical thinking. Journal of Science Education and Technology. 2023;32(2). doi: 10.1007/s10956-022-10016-x

80. Akdere M., Acheson K., Jiang Y. An examination of the effectiveness of virtual reality technology for intercultural competence development. International Journal of Intercultural Relations. 2021;82:109–120. doi: 10.1016/j.ijintrel.2021.03.009

81. Clancy E.A., Quinn P., Miller J.E. Assessment of a case study laboratory to increase awareness of ethical issues in engineering. IEEE Transactions on Education. 2005;48(2):313–317. doi: 10.1109/TE.2004.842900

82. Uskoković V. Natural sciences and chess: a romantic relationship missing from higher education curricula. Heliyon. 2023;9. doi: 10.1016/j.heliyon.2023.e15015

83. Salas-Pilco S.Z., Xiao K., Oshima J. Artificial intelligence and new technologies in inclusive education for minority students: a systematic review. Sustainability. 2022;14(20). doi: 10.3390/su142013572

84. Conde M.Á., Rodríguez-Sedano F.J., Fernández-Llamas C., Gonçalves J., Lima J., García-Peñalvo F.J. Fostering STEAM through challenge-based learning, robotics, and physical devices: a systematic mapping literature review. Computer Applications in Engineering Education. 2021;29(1):46–65. doi: 10.1002/CAE.22354

85. Li K.C., Wong B.T.M. Personalisation in STE (A) M education: a review of literature from 2011 to 2020. Journal of Computing Higher Education. 2023;35(1):186–201. doi: 10.1007/s12528-022-09341-2

86. Donmez I. STEM education dimensions: from STEM literacy to STEM assessment. Research Highlights in Education and Science. 2020:154–170. Accessed June 05, 2024. https://www.researchgate.net/publication/347976048_STEM_Education_Dimensions_from_STEM_Literacy_to_STEM_Assessment

87. Коновалов А.А. Дефициты методической компетентности педагогов профессионального обучения. Образование и саморазвитие. 2023:18(2);81–99. doi: 10.26907/esd.18.2.07

88. Perignat E., Katz-Buonincontro J. STEAM in practice and research: an integrative literature review. Thinking Skills and Creativity. 2019;31:31–43. doi: 10.1016/j.tsc.2018.10.002

89. Солодихина М.В., Солодихина А.А. Развитие критического мышления магистрантов с помощью STEM-кейсов. Образование и наука. 2019;21(3):125–153. doi: 10.17853/1994-56392019-3-125-153

90. Popa R.-A., Ciascai L. Students’ attitude towards STEM education. Acta Didactica Napocensia. 2017;10(4):55–62. Accessed June 05, 2024. https://files.eric.ed.gov/fulltext/EJ1164986.pdf

91. Ахмедов Г.Г. Научно-педагогические основы внедрения STEM, STEAM, STREAM технологии в образовательную практику. Муниципальное образование: инновации и эксперимент. 2021;79(4):5–11 doi: 10.51904/2306-8329_2021_79_4_5


Рецензия

Для цитирования:


Попова И.Н., Сатдыков А.И. Факторы формирования STEM-компетенций в условиях профессионального образования: аналитический обзор зарубежных исследований. Образование и наука. 2024;26(9):42-73. https://doi.org/10.17853/1994-5639-2024-9-42-73

For citation:


Popova I.N., Satdykov A.I. Factors influencing the development of STEM competencies in vocational training: an analytical review of international studies. The Education and science journal. 2024;26(9):42-73. (In Russ.) https://doi.org/10.17853/1994-5639-2024-9-42-73

Просмотров: 464


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International.


ISSN 1994-5639 (Print)
ISSN 2310-5828 (Online)